MAF	RKER C	ODE	

STUDI	ENT EN	ROLM	ENT	NUM	BER	(SEI	4)

TONGA NATIONAL FORM SEVEN CERTIFICATE 2024

CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN**) on the top right-hand corner of this page.
- 2. This paper consists of **FIVE SECTIONS** and is out of 70 weighted scores.

SECTION	STRANDS	TOTAL SKILL LEVEL
ONE	ATOMIC STRUCTURE, BONDING, SOLIDS AND RELATED PROPERTIES	11
TWO	KINETIC AND NUCLEAR CHEMISTRY	8
THREE	INORGANIC CHEMISTRY	18
FOUR	QUANTITATIVE AND REDOX CHEMISTRY	20
FIVE	ORGANIC CHEMISTRY	13
	TOTAL	70

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more space for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each additional sheet, number the questions clearly and insert them in the appropriate places in this booklet.
- 6. Note: There is a **periodic table** of the elements provided on **page 19**.
- 7. Check that this booklet contain pages 2-19 in the correct order and that pages 16-18 have been deliberately left blank.

SECTION ONE: ATOMIC STRUCTURE, BONDING, SOLIDS AND RELATED PROPERTIES

CN CI ₂				
	Br_2	СО	61:111	1.4
optify TWO)) compo	unds from the list above that are isoclast	Skill le	vei 1
		inds from the list above that are isoelect		
ompound 1:_			NR	
ompound 2:_			IVIX	
rite the grou p, d, f notatio		lectron configuration of the Chromium	atom using the	
			Skill le	vel 2
			2	
			1	
			0	
			NR	
CN HCI	HF	H₂S		
CN HCI		H₂S	Skill le	vel 2
CN HCI		_	Skill le	vel 2
CN HCI			2	vel 2
CN HCI			2 1	vel 2

5. The **predicted bond angle** for both Methane in H-C-H, and Ammonia in H-N-H is 109.5°

The diagrams below show the **observed bond angles** for Methane and Ammonia.

Observed Bond Angle (°) in Methane	Observed Bond Angle (°) in Ammonia
H 109.5° H H	H 107.3°

Account for the differences in the predicted and the observed bond angles in ammonia compared to methane.

Skill let 3

Skill lev	vel 3
3	
2	
1	
0	
NR	

ine the standard heat of fusion, Δ _{fus} H°. www TWO (2) labelled energy profiles with one for an endothermic reaction the other for an exothermic reaction. Endothermic Energy Profile Exothermic Energy Profile	1 0 NR
the other for an exothermic reaction .	
the other for an exothermic reaction .	NR
the other for an exothermic reaction .]
Endothermic Energy Profile Exothermic Energy Profile]
	Skill le
	2
	0
	NR

4. The equation for the **combustion of ethanol** is:

$$C_2H_5OH_{(I)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(I)}$$

Apply Hess's Law to **calculate** the **enthalpy change for the combustion** of ethanol above using the bond energies (in kJmol⁻¹) shown below:

$$E(C-C) = +347$$

$$E(C-H) = +410$$

$$E(C-O) = +336$$

$$E(O=O) = +496$$

$$E(C=O) = +805$$

$$E(O-H) = +465$$

Skill le	vel 3
3	
2	
1	
0	
NR	

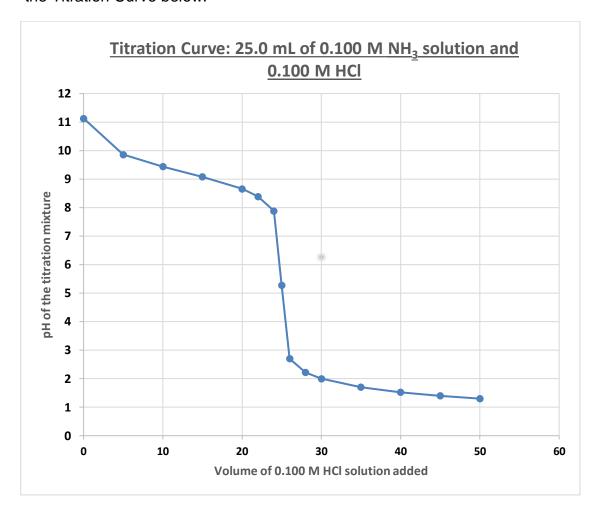
TION THREE:	INORGANIC CHEMISTRY	Skill le	evel 1
Give the <i>chemical fori</i>	mula of ammonium sulphide.	1	
		0	
		NR	
State the colour of so	olid manganese dioxide .	Skill le	evel 1
		1	
		0	
		NR	
Describe, using appro MnO ₄ ²⁻ in acidic cond	priate half-equation , the reaction of the perma	anganate ion,	
		Skill le	evel 2
		2	
		1	
		0	
		NR	
Dagarika tha bagia w	etune of common suids. CuO		
Describe the basic na	ature of copper oxide, CuO.		
		Skill le	evel 2
		0	
		NR	
Describe how chlorin	e acts as an oxidizing agent.		
		Skill le	vel 2
		2	
		1	
		0	
			+

Account for th					 			
					 			
								
								
						Ski	II lev	VE
					 	3		
					 		2	
					 	1	-	
						()	
Explain a deta	ailed accou	nt of the ru	sting pro	cess.		N		
Explain a deta	ailed accou	nt of the ru	sting pro	cess.				
Explain a deta	ailed accou	nt of the ru	sting pro	cess.		N	R	ve
Explain a deta	ailed accou	nt of the ru	sting pro	cess.		N	R III lev	vee
Explain a deta	ailed accou	nt of the ru	sting pro	cess.		N	R lll lev	ve
Explain a deta	ailed accou	nt of the ru	sting pro	cess.		N	III lev	ve

8.	Discuss why majority of the transition metal ions have different oxidation
	states.

Consider in your response the following:

- i. Select **TWO (2)** transition metals and give examples of each of them having more than one oxidation states.
- ii. Describe how these oxidation states happen in the transition metal atoms.
- iii. Give reasons as to why these different oxidation states can exist for the two transition metal atoms, and can include electron configurations to clarify your reasons,


iv.	Make generalized statements about the different oxidation states of transition metal ions.	n
		_
		_
		_
		
		<u> </u>
		<u> </u>
		_
		_
		_
		_
		_
		_
		_
		_
		<u> </u>
		Skil
		- 4
		_ 3
		_ 2
		1

Skill lev	vel 4
4	
3	
2	
1	
0	
NR	

SECTION FOUR:

QUANTITATIVE AND REDOX CHEMISTRY

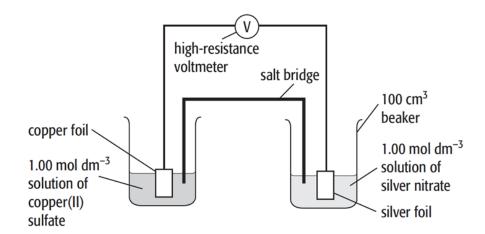
1. A 0.100 M HCl solution is added from a burette to 25.0 mL of a 0.100 M of NH₃ solution in a conical flask. The **pH** of the mixture in the conical flask is graphed in the Titration Curve below:

Use the Titration Curve above to answer questions a. to c. below.

a. Identify the **conjugate acid-base pair** involving NH₃.

Conjugate acid	-	conjugate base

Skill lev	vel 1
1	
0	
NR	


b. **Circle** the **buffer region** in the titration curve, showing the **limits**.

Skill le	vel 2
2	
1	
0	
NR	

Explain the pH at the equivalence point in this titration in terms of the species present in the solution.		
		
	Skill I	ev
	3	
	2	
	1	
	0	
	NR	
	Skill I	ev
	Skill I	ev
		eev
	3	eev

	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
a.	Write the equilibrium constant expression, K_c for this main equilibrium reaction in the Contact process.	
		Skill le
		2
		1
		0 NR
	 i. Definition of an equilibrium reaction, ii. Position of equilibrium before any changes in the pressure, iii. Change in equilibrium position when pressure in the system is increased and why there is change. iv. Change in equilibrium position when pressure in the system is decreased and why there is change. v. State what happens if the system has species in solid or liquid states. 	ľ
		Skill le
		4
		4

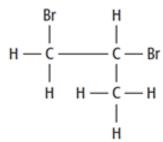
4. The labelled diagram below shows the electrochemical cell involving two different metals, Copper, Cu and Silver, Ag:

The standard electrode potentials for their half-cells are:

$$E^{\circ}_{Ag}^{+}_{(aq)/Ag(s)} = +0.80 \text{ V}$$

$$E^{\circ}_{Cu^{2+}(aq)/Cu(s)} = +0.34 \text{ V}$$

a. Describe **TWO (2)** possible **observations** made at the electrochemical cell in the diagram above.


	Skill	lev	vel 2
Observation 1:	2		
	1		
Observation 2:	0		
	NR		

b. Use the given half-cell standard electrode potentials to **calculate** the potential of the electrochemical cell, E°_{cell} .

Skill lev	vel 3
3	
2	
1	
0	
NR	

Organic Compounds

1. Use the IUPAC rule to write the **systemic name** of the organic compound below:

]	
	Skill le	vel 1
	1	
	0	
	NR	

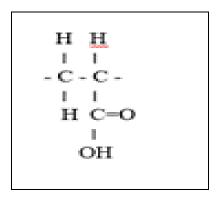
2. a. Draw the **TWO (2) structural isomers** with the **same** molecular formula, C_3H_6O .

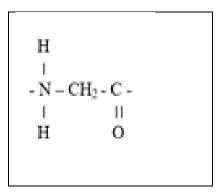
Structural Isomer 1

Structural Isomer 2		
	Skill le	vel 2
	2	
	1	
	11	1

0 NR

Skill level 2


b. Describe a test to **distinguish** between the two structural isomers in a. above.


products form							
						Ski	ill le
						2	
						1	-
						0	
	etween trigl	ycerides prod	luced by pla	nts and tho	ose produc	0 NI)
Differentiate b	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	0 NI)
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	ed by	R
	etween trigl	ycerides prod	luced by pla	nts and the	ose produc	ed by)

5. Shown in the boxes below are the repeating units of two polymers, A and B.

Polymer A

Polymer B

Use the repeating units of Polymer A and Polymer B to **distinguish** between addition and condensation polymerisation.

Consider in your response the following:

- i. The possible monomer of Polymer A and the possible monomer of Polymer B.
- ii. Differences between the structures of the two monomers,
- iii. Differences in how the two monomers form their polymer. Resulting in the two different repeating units.

Skill level 3		
3		
2		
1		
0		
NR		

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.

PERIODIC TABLE

Actinide Series		Lanthanide Series		
AC 227	89	139	5	57
232	90	140	Ce	88
70		141	Pr	59
238		144	Nd	
237			Pm	- 1
239		150	Sm	62
241	95		<u></u>	
244	9%		Gd	
249	97	159	Ъ	65
251	2 %	163	Dy	- 1
252	99	165	용	67
257	8	167	щ	68
	101	169	Ī	69
259	102	173	Ъ	70