MAR	RKER C	ODE	

STUDENT ENROLMENT NUMBER (SEN)									

TONGA NATIONAL FORM SEVEN CERTIFICATE 2022

CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

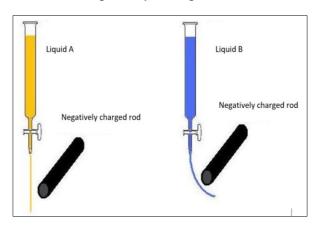
INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN)** on the top right-hand corner of this page.
- 2. This paper consists of FIVE SECTIONS and is out of 82 weighted scores.

SECTION	STRANDS	TOTAL SKILL LEVEL
ONE	ATOMIC STRUCTURE, BONDING, SOLIDS AND RELATED PROPERTIES	16
TWO	KINETIC ENERGY AND NUCLEAR CHEMISTRY	15
THREE	INORGANIC CHEMISTRY	13
FOUR	QUANTITATIVE AND REDOX CHEMISTRY	21
FIVE	ORGANIC CHEMISTRY	17
TOTAL		82

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more space for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each additional sheet, number the questions clearly and insert them in the appropriate places in this booklet.
 - NOTE: A Periodic Table is provided in page 23.
- 6. Check that this booklet contain pages 2-23 in the correct order and that page 22 has been deliberately left blank.

SECTION ONE: ATOMIC STRUCTURE, BONDING, SOLIDS AND RELATED PROPERTIES


Name the shape of Sulfur tetrafluoride, SF ₄ .	
	01.31.1
	Skill leve
	1
	0
	NR
Describe how the ground state electron configuration in the s, p, d, copper atom, Cu, differs from that of a zinc atom, Zn.	f notation of
	Chillians
	Skill leve
	Skill leve
	2

3. A **negatively** charged rod was brought close to jet streams of two different molecular liquids, **A** and **B**. The following is observed in **Figure 1**(a).

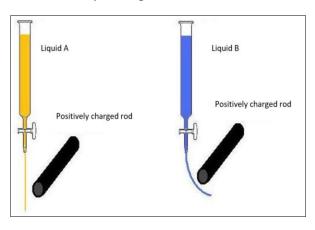

Then a **positively** charged rod was brought close to the jet streams of liquids **A** and **B**. The observed results are shown in **Figure 1**(b).

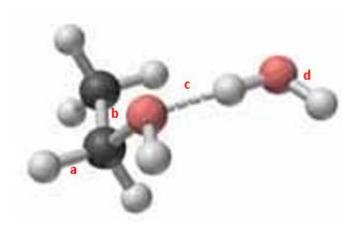
Figure 1: Reactions of streams of liquid A and liquid B when placed near (a) negatively charged rods and (b) positively charged rod.

a. Negatively charged rod

b. Positively charged rod

NR

Analyse the information and the results in Figure 1(a) and 1(b) above to determine the polarity of liquids A and B with justifications.


Skill level 3
3
2
1
0

4. Models of a molecule of water and ethanol are shown in **Figure 2** below and they have bonds existing that are labelled as **a**, **b**, **c** and **d**.

In the models, each coloured sphere represents an atom with:

red = oxygen atom, white = hydrogen atom, and black = carbon atom

Figure 2: Ethanol molecules bonding

Circle ONE (1) letter that correctly represents the strongest covalent bond.

a b c d

Skill le	vel 1
1	
0	
NR	

5. Both water, H₂O, and ammonia, NH₃, have **similar molar mass** of 18 gmol⁻¹ amd 17 gmol⁻¹ respectively but **very different melting points**.

Table 1 shows the melting points and molar mass of water and ammonia

Table 1: Melting points (°C) and molar mass (gmol⁻¹) of water, H₂O and ammonia, NH₃

	Water, H₂O	Ammonia, NH₃
Molar mass (gmol ⁻¹)	18	17
Melting point (°C)	0	-77.7

				_	
	 	 		Skill le	vel
 	 	 	 	3	
	 	 		2	
 	 	 	 	1	
				0	
				NR	

6. Copper sulphate, CuSO₄ is easily hydrated. Describe how copper sulphate is **hydrated**. [Use labelled diagram to clarify your description]

 Skill le	vel 2
 . 2	
 . 1	
 0	
NR	

7. Lithium, Li and sodium, Na are elements of the Periodic Table with their physical properties and bonding type given below:

Properties	Lithium, Li	Sodium, Na
Melting point (°C)	181	98
Boiling point (°C)	1342	883
Electrical Conductivity	average	very good
Electronegativity	0.98	0.93
First ionisation energy (kJ/mol)	596	496
Bonding	Metallic	Metallic

Discuss the effect of the atomic structure of lithium, Li and sodium, Na or and physical properties above.	their bonding		
	····		
	<u> </u>		
	·		
			
	····		
	 -		
	Ski	II leve	el 4
	2		
	1		
	C		
	N	R	

SECTION TWO: KINETIC ENERGY AND NUCLEAR CHEMISTRY

Part A: Kinetic Chemistry

Ammonia is manufactured from nitrogen, N2, and hydrogen, H2, in the Haber Process.

$$N_2(g) + 3H_2(g) \stackrel{400^{\circ}C}{\Longrightarrow} 2NH_3(g)$$
 $\Delta H = -92 \text{ kJmol}^{-1}$

The following associated bond energies are given.

N≡N is 944 kJmol-1

H-H is 436 kJmol-1

2.

1.	Define bond energy .	Skill lo	Skill level 1	
		1		
		0		
		NR		

Use the energy data above to calculate the energy of the N-H bond. (You must show all your working.)		
(You must snow all your working.)		
	Skill le	evel 3
	3	+

1 0 NR

The Kinetic Theory of Gases assumes the following: Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature and high molecular masses.	The Kinetic Theory of Gases assumes the following: Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others.			Skill le
The Kinetic Theory of Gases assumes the following: • Particles of gases move fast and randomly, • The distance between the gas particles is much greater than their individual sizes, • There are no forces of attraction or repulsion between the molecules, • No loss of kinetic energy of the gas particles at collision. • When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature	The Kinetic Theory of Gases assumes the following: • Particles of gases move fast and randomly, • The distance between the gas particles is much greater than their individual sizes, • There are no forces of attraction or repulsion between the molecules, • No loss of kinetic energy of the gas particles at collision. • When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature			. 2
The Kinetic Theory of Gases assumes the following: Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature	The Kinetic Theory of Gases assumes the following: Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO ₂ , methane, CH ₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature			. 1
 Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO₂, methane, CH₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature 	 Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO₂, methane, CH₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature 			0
 Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO₂, methane, CH₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature 	 Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. The Kinetic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, CO₂, methane, CH₄ and others. Discuss the limitations of the Kinetic Theory under conditions of high pressure, low temperature 			NR
		The Kine CO ₂ , met	Particles of gases move fast and randomly, The distance between the gas particles is much greater than their individual sizes, There are no forces of attraction or repulsion between the molecules, No loss of kinetic energy of the gas particles at collision. When temperature increases, the gas particles moves faster and collide with the wall of the container to cause increase pressure. etic Theory is almost true for Helium, He and Neon, Ne but not for carbon dioxide, thane, CH ₄ and others.	ure
		and high	molecular masses.	
		and high	molecular masses.	
		and high	molecular masses.	
Skill lev	Skill lev	and high	molecular masses.	Skill le
		and high	molecular masses.	
		and high	molecular masses.	4
4		and high	molecular masses.	4
	3 2	and high	molecular masses.	3 2

Part B:	Nuclear	Chemistry	V
---------	---------	-----------	---

[Hint! You must identify X first with its atomic and mass r	number]		
		Skill le	<i>ا</i> و
		2	
		1	
		0	
		NR	
		Skill lo	21
		3	21
			21
		3 2	21

SECTION THREE:

INORGANIC CHEMISTRY

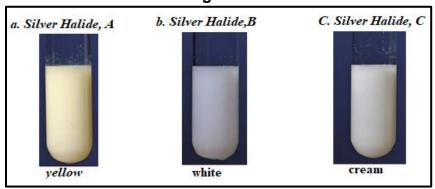
Part A: Transition Metals

4		41 .							
7	INOTORMINO	tha	AVIASTIAN	numnara	OF CO	ramii im i	IN CAMILI	m aichramata	
Ι.		uic	UXIUALIUL	HUHHUEL C	л слп	IOITHUITI I	แ เ อบนเน	m dichromate	<i>.</i>

Skill level 1	
1	
0	
NR	

2. Describe the **colour <u>changes</u>** in the equilibrium formed by chromate ions and dichromate ions in acidic condition when alcohol is present.

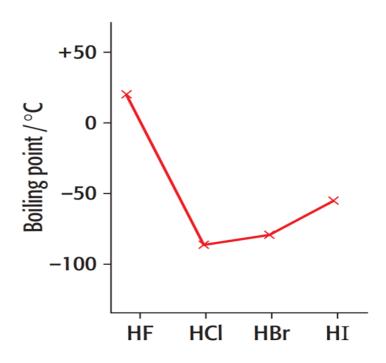
DICHROMATE ION CHROMATE ION		
	Skill lev	vel 2
	2	
	1	
	0	
	ND	


Part B: Complex Ions

Name the aquo complex ion formed by iron (II) or Fe ²⁺ .	Skill lev	vel 2
Traine the ages complex for formed by from (ii) of the .	2	
	1	
	0	
	NR	
Explain why majority of the transition metal ions form coloured complex compounds .		
	Skill le	vel 3
	3	
	2	
	1	
	0	
	NR	

Part C: Group 17 Chemistry

1. **Figure 3**(a), (b) and (c) below show solid suspensions or precipitates of different silver halides. They are labelled as Silver halide **A**, **B** and **C** with yellow, white and cream colour respectively.


Figure 3

Describe the **observations** made when each of the silver halide solids, **A**, **B** and **C** is separately mixed with concentrated ammonia solution.

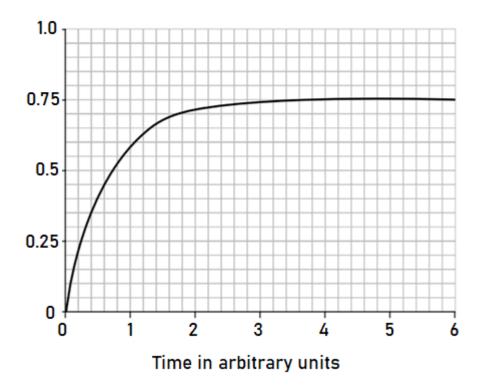
2. **Figure 4** below shows the boiling point in degrees Celsius of hydrogen halides.

Figure 4: Boiling points of Hydrogen halides

ccount for the anomaly in the trend of the boiling points of hydrogen halides nown in Figure 4 .		
	Skill le	2V6
	3	+
	1	
	0	1
	NR	1

SECTION FOUR: QUANTITATIVE AND REDOX CHEMISTRY

Part A: Equilibrium Chemistry


A 1.0 L container has initial amounts of 1 mole of Hydrogen gas, $H_{2\,(g)}$, and 1 mole of Iodine gas, $I_{2\,(g)}$ placed in it and was subjected to a temperature of 700 K.

Over time, they formed Hydrogen iodide gas, HI (g) as shown in the graph below:

$$H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$$
 $\Delta H = -ve$

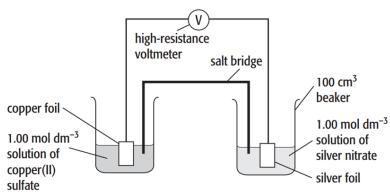
Graph 1: Concentration of Hydrogen iodide gas, $HI_{(g)}$ in $molL^{-1}$ formed over time from 1 mole of Iodine, I_2 and 1 mole of Hydrogen, H_2

Concentration of HI formed in moles/litre

1.	Define an equilibrium reaction.	Skill level 1	
		1	
		0	
		NR	

	Skill lev
	2
	1
	0
- 	NR
	Skill lev
	3
	2
	1
	0

Part B:	Solubility
rait D.	Joiubility


40.0 mL of 0.650 moL⁻¹ magnesium nitrate solution is mixed with 100 mL of 2.50 molL⁻¹ sodium hydroxide solution. K_s (Mg(OH)₂) = 5.61x10⁻¹².

Define solubility product, K _{s.}	Skill le	vel 1
	_ 1	
	0	
	NR	
Dradiat whather a presinitate will form when miving these two calutions		
Predict whether a precipitate will form when mixing these two solutions.	_	
	-	
	-	
	-	
	-	
	-	
	Skill le	vel 3
	- 3	
	_ 2	
	_ 1	
	0	
	NR	

Part C: Redox Chemistry

Study and use data from **Figure 5** below and the given information to answer the following questions.

Figure 5: Electrochemical cell of two half cells, Cu/Cu²⁺ and Zn/Zn²⁺ at standard conditions.

The standard electrode potential for the half-cells in **Figure 5** above are:

- i. $E^{0}_{(Ag/Ag+)}$ is +0.80V,
- ii. $E^0(Cu/Cu2+)$ is +0.34V,

1.	Give the polarity of the electrodes in the electrochemical cell in Figure 5 supported		
	with reasons.	Skill lev	vel 2
		2	
		1	
		0	
		NR	

2. Use the standard electrode potentials of the half-cells to calculate the expected reading in the high resistance voltmeter in Figure 5 above.

Include in your answer the appropriate unit.

Skill lev

3
2

 Skill lev	vel 3
 3	
 2	
 1	
 0	
 NR	

3.	Discuss all the changes and movements of species that occur in both half-cells of the electrochemical system in Figure 5 .		
	[Changes involve the half-reactions AND relevant Species and their movement to consider and include the following: Saltbridge's positive and negative ions,		
	Copper and sulphate ions,		
	Silver and nitrate ions,		
	Copper foil and the aluminium foil,		
	Electrons and current]		
	, and a second of the second o		
		-	
		,	
		_	
		•	
		_	
		-	
		_	
		•	
		_	
		•	
		Skill le	vel 4
		4	
		3	
		2	+
		. 1	
		. 0	
		ND	

CECI			N/E.
SECT	HOI	νг	

ORGANIC CHEMISTRY

Part A: Organic Compounds

A compound, CH₃CH₂CH=CHCH₂CH₂OH can have different spatial arrangements of atoms.

1.	Use the IUPAC rules to name the compound, CH ₃ CH ₂ CH=CHCH ₂ CH ₂ OH.	Skill lev	vel 1
		1	
		0	
		NR	

The compound in (1.) has cis and trans isomers.
 Draw the structures of the cis and trans isomers of the compound in the spaces provided below.

Cis	Trans	
		Skill level 2
		2
		1
		0
		NR

Part B: Organic reactions

		Skill le	eve
		. 2	
		. 1	
		0	
		NR	
Account for the eagent.	e differences in the reactivity of aldehyde and ketone with the Tollen's		
		Skill le	eve
		3	
		. 2	
		1	
		0	
ootassium peri	ced equation for the reaction of ethanol, CH ₃ CH ₂ OH, with acidified manganate solution, KMnO ₄ /H ⁺ . termediate and final products.]	0	
ootassium peri	manganate solution, KMnO ₄ /H ⁺ .	0 NR	
ootassium peri	manganate solution, KMnO ₄ /H ⁺ .	O NR	
ootassium peri	manganate solution, KMnO ₄ /H ⁺ .	NR Skill le	
ootassium peri	manganate solution, KMnO ₄ /H ⁺ .	O NR	

•	Differentiate between the structure of glycine and alanine.	-	
		Skill lev	vel
		- 3	
		_ 2	
		_ 1	
		_ 0	
		NR	
i.	A protein is developed from glycine represented by letter G , and alanine, represented by letter A , in the following order: G-A-A-G Discuss how the properties of the glycine and alanine are integrated into the protein structure G-A-A-G Consider in your answer the following: Identify the type of polymerization in the formation of the protein and justify, Draw and label the resulting protein molecule of G-A-A-G, Compare and contrast the structure of the individual amino acids with the protein, Explain how the physical and chemical properties of the individual amino acids, may differ from the protein.	-	
		Chill lo	
		Skill lev	vel
		3	
		2	
		1	
		0	
			-

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.

Series	Actinide	o	Lanthanide		
227	89 Ac	139	6	57	
232	₹ %	140	Ce	58	
231	91 Pa	141	Pr	59	
238		144	N		
237	N N		Pm		
239		150	Sm	62	
241	95 m	152	_	63	
244	Cm %		Gd		
249	97 BK	159	ď		
251	σ *	163	Dy	66	
252	99	165	용	67	
257	∄ 8	167	щ	68	
	∑	169	Īm	69	
259	Z 02	173	Ъ	70	

		-				$\overline{}$			$\overline{}$			$\overline{}$						1			
223	7	87	133	င္ပ	55	85.5	Rb	37	39.1	~	19	23.0	Na	=	6.9	=	ω	-			
226	Ra	88	137	Ва	56	87.6	Ş	38	40.1	Ca	20	24.3	βW	12	9.0	Ве	4	2			
262	5	103	175	Ε	71	88.9	4	39	45.0	Sc	21	ω						,			
261	4	ğ	179	¥	72	91.2	Zr	8	47.9	=1	22	4								`	
262	B	105	181	ď	73	929	N N	41	50.9	<	23	տ								Atomic number	
263	Sg	0,6	184	٤	74	95.9	Mo	42	52.0	Ω	24	٥								umber	
264	Bh	107	186	Re	75	98.9	ี่ดี	å	54.9	Š	25	7						1.0	I	1	
265	HS	108	190	õ	76	101	2	#	55.9	ē	26	8						Molar			•
268	≩	109	192	=	77	103	齐	\$	58.9	င္ပ	27	v						Molar mass / g mol-1			
271	DS	110	195	7	78	106	Pd	46	58.7	Z.	28	10						mol-i			
272	Rg	111	197	Ą	¥	108	β	47	63.5	ပ	29	=									
277	ဂ္ဂ	112	201	Нд	80	112	င္မ	48	65.4	Zn	30	12									
			204	=	81	115	5	49	69.7	ရှေ	31	27.0	≥	3	10.8	œ	5	13			
289	7	114	207	РЬ	82	119	Sn	50	72.6	Ge	32	28.1	Si	4	12.0	ი	6.	14			
			209	В	83	122	Sb	51	74.9	As	33	31.0	٣	15	14.0	z	7	15			
292	7	116	210	Ро	92	128	ь́	£3	79.0	Se	8	32.1	s	6	16.0	0	œ	16			
			210	¥	85	127	-	53	79.9	Bŗ	35	35.5	Ω	17	19.0	71	9	17			
			222	R	86	131	×e	2	83.8	<u>~</u>	8	40.0	Ą	8	20.2	Ne	ō	4.0	He	2	18

PERIODIC TABLE