MARKER CODE					

STUDENT ENROLMENT NUMBER (SEN)						N)			

TONGA FORM SIX CERTIFICATE

2024

CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN)** on the top right-hand corner of this page.
- 2. This paper consists of **FOUR SECTIONS** and is out of 70 weighted scores.

SECTION	STRANDS	TOTAL SKILL LEVEL
ONE	ATOMIC STRUCTURE AND	22
	BONDING	
TWO	NATURE OF PARTICLES AND	5
	POLARITY	
THREE	EQUATIONS AND CALCULATIONS	22
FOUR	ORGANIC REACTIONS	21
	TOTAL	70

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more space for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each additional sheet, number the questions clearly and insert them in the appropriate places in this booklet.
- 6. There is a **periodic table** of the elements provided on page 18.
- 7. Check that this booklet contain pages 2-19 in the correct order and that page 19 has been deliberately left blank.

SECTION ONE: ATOMIC STRUCTURE AND BONDING 1. Nitrogen has two stable isotopes: Nitrogen- 14 and Nitrogen - 15.

		Skill leve
		2
		1
		0
		NR
Pho	osphorus has an atomic number of 15. It has 5 valence electrons i	n its valence shell.
a.	Define the following terms:	Skill leve
	i. valence electrons	1
		0
		NR
		Skill leve
	ii. valence shell	1
		0
		NR
		Skill leve
		2
		1
		0
		NR NR
	pper is a metal and is used in many industries as electrical appliance pper can also form an ion such as Cu^+ and Cu^{+2} which further reac	es and cooking wares.
	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac	es and cooking wares.
Copion.	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac	es and cooking wares. ts to form the complex
Copion.	pper can also form an ion such as $\mathbf{C}\mathbf{u}^+$ and $\mathbf{C}\mathbf{u}^{+2}$ which further reac .	es and cooking wares. ts to form the complex Skill leve
Copion.	pper can also form an ion such as $\mathbf{C}\mathbf{u}^+$ and $\mathbf{C}\mathbf{u}^{+2}$ which further reac .	es and cooking wares. ts to form the complex Skill leve
Copion.	pper can also form an ion such as $\mathbf{C}\mathbf{u}^+$ and $\mathbf{C}\mathbf{u}^{+2}$ which further reac .	es and cooking wares. ts to form the complex Skill leve 1 0
Copion.	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac . State the bond disrupted when copper melts .	es and cooking wares. ts to form the complex Skill leve 1 0
Cop	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac . State the bond disrupted when copper melts .	es and cooking wares. ts to form the complex Skill level
Copion.	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac . State the bond disrupted when copper melts .	es and cooking wares. ts to form the complex Skill level
Copion.	pper can also form an ion such as Cu^+ and Cu^{+2} which further reac . State the bond disrupted when copper melts .	es and cooking wares. ts to form the complex Skill level

4. The table below shows the **melting points** of some solids:

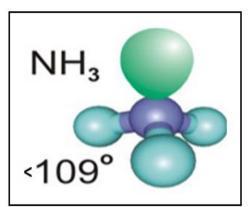
SUBSTANCE	MELTING POINT (°C)
Copper Cu	1084
Sodium chloride NaCl	801

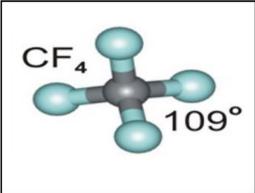
		Skill lev	vel 1
a.	State the components of sodium chloride.	1	
		0	
		NR	

		Skill lev	vel 1
b.	State the bonds disrupted when Sodium chloride melts .	1	
		0	
		NR	

 Skill level 2	
 2	
 1	
 0	
NR	

6. The table below shows **electrical conductivity**, **structures** and **bonding** of period 3 chlorides.


CHLORIDES	NaCl	MgCl ₂	Al ₂ Cl ₆	SiCl ₄	PCl ₃ , Cl ₅	Cl ₂
Structure	Giant ic	onic	Simple molecular			
Bonding	ionic	2	Covalent			
Electrical	condu	ict	poor			
conductivity						


		Skill lev	/el 1
a.	State the charge of a chloride ion.	1	
		0	
		NR	

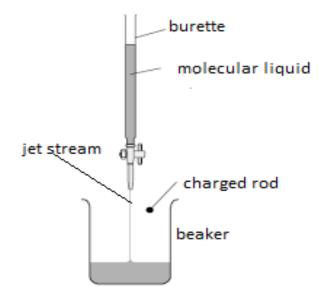
		Skill lev	vel 1
b.	Determine the oxidation state of chloride ion.		
		0	
		NR	

 		
·		
·		
[_6	N 11 1	
5	skill lev	/ei 3
 	3	
 	2	
 	1	
	0	

7. The diagram below shows two molecules namely **ammonia**, NH_3 and **tetrafluoromethane**, CF_4 with their different **bonding angles** $\approx 109^0$ and 109^0 respectively.

Study the diagram carefully and discuss why ammonia , NH ₃ and tetrafluorometha have different bond angles.	me, CF4	
	Skill le	vel 4
	4	
	3	
	2	
	1	_
	0	_
	NR	

SECTION TWO: NATURE OF PARTICLES AND POLARITY


1. The table below shows the **states of water** labelled as **X**, **Y** and **Z** in different **temperatures**:

State of water	Temperature (⁰ C)
X	0
Y	23
Z	100

Describe the **nature of particles** of water during the process of change from the state of water **X** to **Y**.

•	Skill le	vel 2
-	2	
-	1	
_	0	
-	NR	

2. An experiment was conducted for the testing of **polarity of molecules** in liquid form. Two molecular liquids labelled **A** and **B** were poured into two different burettes. A charged rod was placed close to the jet streams.

Observations were recorded as shown in the table below:

MOLECULAR LIQUID	JETSTREAM OBSERVATION
A	Bend towards the charged rod
В	Did not bend

Deduce with reasons from the given data including observations, the polarity of molecules in liquid A and B .	;	
·		
	Skill le	vel 3
	3	
	2	
	1	
	0	
	NR	

1. **Balance** the two **half equations** below **then** combine to write a **full balanced equation** for a redox reaction.

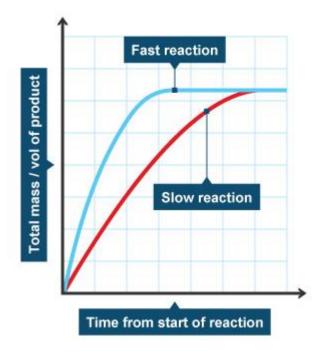
 $Na_{(s)}$ \longrightarrow $Na^+_{(aq)}$

Skill lev	vel 3
3	
2	
1	
0	
NR	

2. Calculate the **molar mass** of glucose $C_6H_{12}O_6$. Providing the **relative atomic mass** of each element: carbon, 12.01 g/mol; hydrogen, 1.00 g/mol; and oxygen, 15.99 g/mol.

Skill le	vel 3
3	
2	
1	
0	
NR	

Nitrogen dioxide, NO ₂ , exists in equilibrium with Dinitrogen tetroxide, N ₂ O ₄ .																					
	O _{2 (g)}	•	I ₂ O _{4 (g)}		tŀ	the	ne :	forv	war	d rea	actic	on is	an e	xoth	ermi	ic re	eacti	on.			
	equilibrium, bobserved.	oth gases	are pres	sent	nt i	ir	in t	the	mix	kture	e and	d a co	onsta	ant p	ale b	row	n col	lor ma	ay		
	ober ved.																			Skill le	ve
a.	Define Le C	Chatelier'	's princ	ciplo	le.) .														1	
																				0	
																				NR	
b.	Account for changed. Consider in Type	-	onse the	ie fo	oll	llo	lov	wing	g:					-							
	gas. • How	this tem	perature	e ch	haı	an	ngo	ge ca	ause	es the	ne pro	oduc	tion	of m	nore 1	red-l	brow	n gas	s.		
																		 -			
																			<u> </u>		
																			 [Skill le	V
																			 [Skill le	V
																			[3 2	V•
																			[[[3 2 1	V
																				3 2 1 0	V*
																				3 2 1	
A b	oreathalyser to	est is con	nmonly	use	ed	d 1	nc	owa	aday	ys in	ı Tor	nga to	o mi	nimi	ze ro	pad d	leath	toll.		3 2 1 0	
	oreathalyser to		-																	3 2 1 0	Ve
	$H^+(aq) + 2 Cr_2$	2O ₇ ² -(aq) -	+ 3 C ₂ H	I ₆ O()(a	(ac	ıq)													3 2 1 0	
		2O ₇ ² -(aq) -	+ 3 C ₂ H	I ₆ O()(a	(ac	ıq)													3 2 1 0 NR	
16 I	$H^+(aq) + 2 Cr_2$	2O ₇ ² -(aq) -	+ 3 C ₂ H	I ₆ O()(a	(ac	ıq)													3 2 1 0 NR	
16 I	$H^+(aq) + 2 Cr_2$	2O ₇ ² -(aq) -	+ 3 C ₂ H	I ₆ O()(a	(ac	ıq)													3 2 1 0 NR Skill le	
16 I	$H^+(aq) + 2 Cr_2$	2O ₇ ² -(aq) -	+ 3 C ₂ H	I ₆ O()(a	(ac	ıq)													3 2 1 0 NR Skill let 1 0	V.
16 I	$H^+(aq) + 2 Cr_2$	eO7 ²⁻ (aq) -	+ 3 C ₂ H	I ₆ O(O(a	st.	t.)		3 (C ₂ H ₄									3 2 1 0 NR Skill let 1 0 NR	V.
16 I a.	H ⁺ (aq) + 2 Cr ₂ Define the t	eO7 ²⁻ (aq) -	+ 3 C ₂ H	I ₆ O(O(a	st.	t.)		3 (C ₂ H ₄									3 2 1 0 NR Skill le 1 0 NR	Ve


following data.	gy change for the production of methane using the
$C_{(s)} + 2H_{2~(g)} \rightarrow CH_{4~(g)}$	$\Delta H = ?$
$CH_{4~(g)} + 2O_{2~(g)} \rightarrow CO_{2~(g)} + 2H_2O_{~(l)}$	$\Delta H = -891 \text{ kJ}$
$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$	$\Delta H = -393 \text{ kJ}$
$2H_{2~(g)}+O_{2~(g)} \rightarrow 2H_2O_{~(l)}$	$\Delta H = -572 \text{ kJ}$
	Skill level 3
	3
	2
	1
	0
	ND

CoSO ₄ ·2	A student is attempting to determine how many water molecules there are in the hydrate $CoSO_4 \cdot xH_2O$, where x is an integer. The student weighs a sample of the hydrated compound and heats it until the mass remains constant.			
constant				
Using th	e experiment results below,	, determine the value of x .		
[Co = 59]	θ g/mol, $S = 32$ g/mol, $O = 1$	16 g/mol, H = 1 g/mol		
Mass of	hydrated $CoSO_4 = 4.97g$	mass of anhydrous $CoSO_4 = 2.74g$		
			Skill le	٠,
			3	
			2	
			1	
			0	Ī

NR

7. Two woods of the same size from the same plant were bought from a timber store. Child A took one wood whilst child B chopped the other wood into five equal parts. Both children then started lighting their woods and recorded the time taken for the woods to have completely burned.

The data recorded by $child\ A$ and $child\ B$ were then used to draw a graph as shown below.

Discuss and justify the given graph on the rates of reaction of the two woods burned by **child A** and **child B**.

unclude in your answer: clearly discuss with reasons which graph is child A's graph and which is child B's graph, also what is your advice to the family on which wood to be used.					
for the campfire]					

 _	
 -	
_	
 -	
 -	
 -	
Chill los	, al 4
 Skill lev	vel 4
 Skill lev	vel 4
	vel 4
4 3	vel 4
3 2	vel 4
4 3	vel 4
3 2	vel 4

SECTION FOUR:

ORGANIC REACTIONS

1. The table below shows **structures** and **melting points** of some common fatty acids.

NAME	NUMBER OF CARBON	STRUCTURE	MELTING POINT (°C)
Stearic acid	18	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70
Oleic acid	18		4
Linoleic acid	18	VVV—V—VVVVCOOH	-5
Linolenic acid	18	COOH	-11

saturation of fatty acids.	ng	
	Skill le	vel 3
	3	
	2	
	1	
	0	
	NR	

aming the products formed.	
	Skill le
	3
	2
	1
	0
	NR
	Skill le
	3
	3 2
	3

4. Describe Markovnikov's rule in the reaction shown below:

Skill level 2		
2		
1		
0		
NR		

5. PVC and Polythene products are very important in everyday life. PVC are used as water drainages and polythene are used in the form of plastics to pack and store food. Despite their importance to humans, they also cause environmental problems.

Describe the **environmental problems** caused by the PVC and polythene products.

Skill level 2		
2		
1		
0		
NR		

6. The diagram below shows the **polymer** of carbohydrate.

a. Define the term **Polymer**.

Skill level 1	
1	
 0	
 NR	

b. Identify the monomer of carbohydrate.

Skill level 1		
1		
0		
NR		

c. Write a balanced equation for the Fehling's test for the monomer of carbohydrate.

Skill le	vel 2
2	
1	
0	
NR	

Skill level 1

Skill level 1

0 NR

7. The following structures are labelled as **V**, **W** and **X**. Study the structures carefully and answer the questions that follows:

- b. Structure W can form geometric isomer. Define **geometric isomer**.

 O

 NR
- d. Structure **V** can undergo substitution reaction to produce 2-chlorobutane.

 Define **substitution reaction**.

PERIODIC TABLE

Series	Actinide	odildo	Lanthanide	
227	89	139	<u>۵</u>	57
232	90 90	140	Ce	58
231		141	Pr	59
238	92	144	ď	60
237		147	Pm	61
239	94	150	Sm	62
241	95	152		63
244	36	157	Gd	64
249	97	159	ď	65
251	2 %	163	Dy	66
252	99	165	H	67
257	100	167	T.	68
258	101	169	Ψ	69
259	102	173	Ъ	70

(87			55			37	Г		=	Г		=			ω	1			
Fr 223	7	33	င္ယ	5	85.5	Вb	7	39.1	~	9	23.0	N _O	_	6.9	=		-			
Ra 226	88	137	Ва	95	87.6	Sr	38	40.1	Ca	20	24.3	βW	12	9.0	Ве	4	2			
262	103	175	Ε	71	88.9	4	39	45.0	Sc	21	ω						•			
261	ğ	78	Į,	72	91.2	Zr	40	47.9	=1	22	4								`	
Db	105	<u>@</u>	₫	73	92.9	N B	4	50.9	<	23	տ								Atomic number	
Sg	8	84	8	74	95.9	Mo	42	52.0	Ω	24	٥								umber	
Bh	107	186	Re	75	98.9	て	43	54.9	Š	25	7						1.0	I	1	
Hs	108	190	ဝွ	76	101	2	44	55.9	ē	26	8						Molar			'
M	109	192	=	77	103	ᇚ	45	58.9	င္ပ	27	°						Molar mass / g mol-			
Ds	110	195	₽	78	106	Pd	46	58.7	Z.	28	10						mol-			
Rg	=	197	A	79	108	Ag	47	63.5	ပ်	29	11									
C n	112	201	퓹	80	112	ဂ္ဂ	48	65.4	Zn	30	12									
		20 :	=	81	115	5	49	69.7	ဓ္ဓ	31	27.0	≥	3	10.8	B	(5)	13			
289	114	207	В	82	119	Sn	50	72.6	Ge	32	28.1	Si	14	12.0	ი	6.	14			
		209	В.	83	122	Sb	51	74.9	As	33	31.0	7	15	14.0	z	7	15			
292	116	210	Po	22	128	Б	52	79.0	Se	2	32.1	s	16	16.0	0	œ	16			
		210	<u> </u>	85	127	-	53	79.9	Вг	35	35.5	Ω	17	19.0	71	9	17			
		222	R	8	131	×e	2	83.8	즉	8	40.0	Ą	8	20.2	Ne	ō	4.0	He	2	18

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.