MARKER CODE				

ST	UDE	NT E	NRC	DLMI	ENT	NUN	/ΙΒΕΙ	R (SE	EN)

TONGA FORM SIX CERTIFICATE

2021

CHEMISTRY

QUESTION AND ANSWER BOOKLET

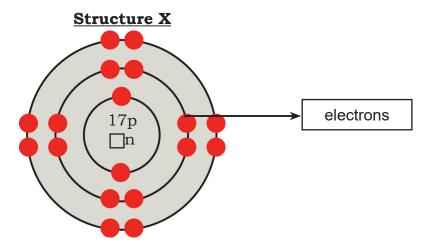
Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN)** on the top right-hand corner of this page.
- 2. This paper consists of **SEVEN QUESTIONS** and is out of 70 Weighted scores.

QUESTION	STRANDS	TOTAL SKILL LEVEL
ONE	Atomic structure, Bonding and Related Properties	30
TWO	Solid and Related Properties	5
THREE	Kinetic Chemistry	6
FOUR	Organic Chemistry	15
FIVE	Inorganic Chemistry	4
SIX	REDOX Chemistry	8
SEVEN	Quantitative Chemistry	2
	TOTAL	70

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more space for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each additional sheet, number the questions clearly and insert them in the appropriate places in this booklet.


NOTE: There is a group of the **Periodic Table of the Elements** provided on page **19**. The table gives the **Symbol, Atomic Number** and the **Relative Atomic Mass** of the elements. The Groups (columns) are numbered I, II, III, IV etc.

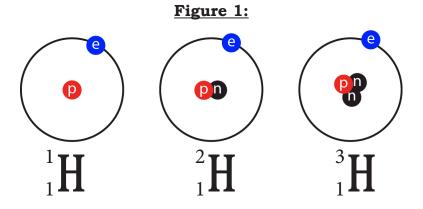
NOTE: The symbol M is used for molar mass. M (Na) = $gmol^{-1}$ and M (CO_2) = 44 $gmol^{-1}$.

6. Check that this booklet contains pages **2 - 19** in the correct order and that pages 17 - 18 have been deliberately left blank.

QUESTION ONE: ATOMIC STRUCTURE, BONDING and RELATED PROPERTIES

1. Structure X is a monoatomic ion. It consists of 17 protons and 18 electrons. The mass number is 35.

	Ski	
		1_
		0
	N	IR
Calculate the number of neutrons.		
	Ski	cill
	_1	1
	<u> c</u>	0
	N	IR
	Ski	cill
Name the monoatomic ion represented by Structure X .	1	1
	С	0
	N	IR
	Ski	cill
How many valence electrons does atom X have?	1	1
	С	0
	N	IR
Electrons are filled and arranged according to orbitals.		
Define the p electron orbital in the third shell.		
	Ski	cill
	[1	1


2. Sodium bicarbonate is also called baking soda and has many useful purposes. It can form a polyatomic ion, used in baking and for cleaning purposes.

 ${\bf SOURCE:}\ \underline{https://www.google.com/search?q=BAKING+SODA\&source}$

a.	Define the term polyatomic ion .		
		Skill l	evel 1
		1	
		0	
		NR	
b.	Write the symbol of the polyatomic ion provided in the instruction	Skill l	evel 1
υ.	above.	1	
		0	
		NR	
		Skill l	evel 1
c.	Name the polyatomic ion present in baking soda.	1	
		0	
		NR	

3. Figure 1 show three different stable isotopes for the element Hydrogen.

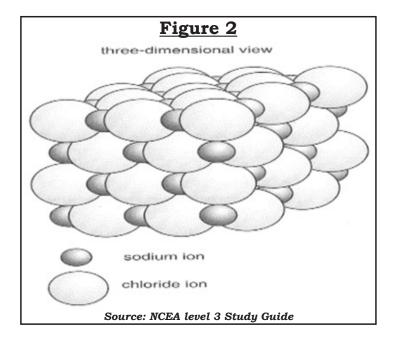
a. Define the term **isotope**.

Skill level 1		
1		
0		
NR		

4.

5.

b.	Naı	me the isotope 2-H	ydrogen, ² H .			Skill leve		
c.	Sta	State the type of isotope present in 3- Hydrogen, ³ H.						
arra Sta	ange te wl	iodic table of eleme d in groups and in nich group number l salt formers.	periods.			O NR Skill leve 1 0 NR		
diff In t	erent	nd NF ₃ have the sa t shapes and bond ox below, fill the app for questions 5.a . a	angles. propriate unshade					
a.	Naı	me the shape forme	ed in CH ₂ O.			Skill leve		
b.	Sta	te the ideal bondin	g angle in NF ₃ .			1		
		Molecule	CH ₂ O	NF ₃		NR		
		Shape				Skill leve		
		Ideal Bond Angle				0 NR		
C.	ang	and NH ₃ molecule gles differ.				Skill leve		
						2		
						0		


b. Should ZX, Justify the sand X].	erm electronegativity .		
Justify the pand X].			
Justify the pand X].		Skill I	ev
Justify the pand X].		1	Ļ
Justify the pand X].		0	L
Justify the pand X].		NR	L
when Potassium chloride and oxy	be considered a polar molecule or a non-polar molecule ?		
chloride and oxy	polarity of ZX_2 [you do not need to identify the elements of Z		
chloride and oxy		Skill l	e
chloride and oxy		3	Γ
chloride and oxy		2	T
chloride and oxy		1	T
chloride and oxy		0	
chloride and oxy		NR	L
a. Write the b a	Chlorate (KClO ₃) is heated, it decomposes to potassium gen gas.		
	lanced equation for the above chemical reaction.		
		Skill l	eı
		2	Ĺ
		1	
		0	

Describe how the Lewis structure for COCl ₂ is drawn using a dot and cross diagram. Sk 2					
Describe how the Lewis structure for COCl ₂ is drawn using a dot and cross diagram. Ski 2					Skill 2 1 0
The table below shows atoms with their respective electronegativity values. Atom Electronegativity value		now the Lewis structu	re for ${ m COCl}_2$ is drawn using a	a dot and cross	NR
Atom Electronegativity value Hydrogen 2.20 Oxygen 3.44 Chlorine 3.16 Predict with reasons the type of bond that will exist between Hydrogen atom and Chlorine atom compared to the type of bond type formed between hydrogen and oxygen atoms. Ski 3.2 1.36					Skill 2 1 0 NR
Hydrogen 2.20 Oxygen 3.44 Chlorine 3.16 Predict with reasons the type of bond that will exist between Hydrogen atom and Chlorine atom compared to the type of bond type formed between hydrogen and oxygen atoms. Ski 3 2 1	The table		1	gativity values.	
Oxygen 3.44 Chlorine 3.16 Predict with reasons the type of bond that will exist between Hydrogen atom and Chlorine atom compared to the type of bond type formed between hydrogen and oxygen atoms. Ski 3 2 1					
Chlorine 3.16 Predict with reasons the type of bond that will exist between Hydrogen atom and Chlorine atom compared to the type of bond type formed between hydrogen and oxygen atoms. Ski 3 2 1		11,4109011	2.20	1	
Predict with reasons the type of bond that will exist between Hydrogen atom and Chlorine atom compared to the type of bond type formed between hydrogen and oxygen atoms. Ski 3 2 1		Oxygen	3.44	-	
	atom and	Chlorine th reasons the type of Chlorine atom compa	3.16 Should that will exist between		
	atom and	Chlorine th reasons the type of Chlorine atom compa	3.16 Should that will exist between		Skill 3
	atom and	Chlorine th reasons the type of Chlorine atom compa	3.16 Should that will exist between		2

QUESTION TWO:

SOLID and RELATED PROPERTIES

Study ${\bf Figure~2}$ carefully to answer the question that follows:

1.	Determine the bond that are disrupted when the structure above boils.		
	-	Skill l	evel 1
		1	
		0	
		NR	

2. Ethanol is soluble in water whereas Pentanol is insoluble in water.

Discuss the **dissolution** of the two molecular substances mentioned above in water.

Skill level 4		
4		
3		
2		
1		
0		
NR		

QUESTION THREE:

KINETIC CHEMISTRY

1. When a person sweats, water is lost from the body by evaporation and exercise speeds it up. Through sweats, sodium chloride (NaCl) in sweat is also excreted.

Sincer Stock Coll. 17 Co. 20 110

source: https://www.google.com/search

Differentiate the strengths of chemical bonds that are disrupted when a person sweats.		
	Skill I	evel 3
	3	
	1	
	0	

NR

2. Copper and Aluminium are metals. Copper is used for electrical wiring and Aluminium is used for making foils and pots.

Source: <u>https://www.google.com/search?q=aluminium+pots&tbm</u>

Relate the uses of copper and aluminium metals to their structure and bonding type.		
	Skill le	evel 3
	2	
	1	
	0	
	NR	

QUESTION FOUR:

ORGANIC CHEMISTRY

Account fo	r the observatio	ns made in	Compound	X and Com	pound Y .	
			1		•	
						Skill
						3
						2
						1
						0
						NR
	wo types of glue				d. cose structures.	
Explain the	differences in the	ne pnysicai į	or oper des or	the two grue	cose su actures.	

Skill I	evel 3
3	
 2	
1	
0	
NR	

3. Figure 3 is an example of the structural formula of a polyunsaturated fat which can undergo the process of hydrogenation.

Figure 3

explain clearly the effects of hydrogenation on the polyunsaturated fat.			ed fat.	

Skill I	evel 3
3	
2	
1	
0	
NR	

Describe how you identified the major product in the above reaction.		
	Skill	le
	2	+
	1	+
	0	+
	NR	
A chemistry class studied the chemistry of alcohols. They carried out as experiment on the reaction of acidified potassium dichromate with 2-propanol.		
Name the products formed from the reaction above.		
	Skill	le
	2	
	1	
	0	Т
		1
	NR	
	NR	
	NR	<u>†</u>
The structural formula of aspirin is:	NR	1
The structural formula of aspirin is:	NR	1
The structural formula of aspirin is:	NR	<u>†</u>
The structural formula of aspirin is:	NR	1
The structural formula of aspirin is: H C C C C C C C C C C C C C C C C C C	NR	1
The structural formula of aspirin is: H H C OH H Aspirin Source: https://www.google.com/search?q=aspirin+chemical+structure&tbm	NR	1
The structural formula of aspirin is: H H C OH H Aspirin Source: https://www.google.com/search?q=aspirin+chemical+structure&tbm	NR	<u>†</u>
The structural formula of aspirin is: H H C OH H Aspirin Source: https://www.google.com/search?q=aspirin+chemical+structure&tbm	NR	<u>†</u>
The structural formula of aspirin is: H H C OH H Aspirin Source: https://www.google.com/search?q=aspirin+chemical+structure&tbm	NR	
H C C C OH H C C O C C CH ₃ H O Aspirin	NR	
The structural formula of aspirin is: H H C OH H Aspirin Source: https://www.google.com/search?q=aspirin+chemical+structure&tbm	NR	<u>†</u>

QUESTION FIVE:

INORGANIC CHEMISTRY

ith your knowledge of solubilities , discuss the tests for the presence of	
ne two unknown solutions and describe what observations will be made.	
	Skill
	4
	3
	2

QUESTION SIX:

REDOX CHEMISTRY

Police officers patrol mostly during Friday and Saturday evenings and sometimes late at night. One of the main reasons for their patrol is to ensure drivers are not drunk with alcohol. A breathalyzer test is used, where drivers exhale through the mouthpiece of the alcohol testing equipment into a test chamber filled with a reddish-orange solution of acidified potassium dichromate $(K_2Cr_2O_7)$.

 $Source: \underline{https://www.google.com/search?q=breathaliser+test}$

1.	Write a full balance	d chemical	equation	for the	breathal	vzer test	reaction

Skill level	
3	
2	
1	
0	
NR	

15	
In industries, sodium chloride undergoes electrolysis for the production of many purities.	
a. Draw a labelled diagram on the electrolysis of molten sodium chloride	÷.
	Skill level 2 2 1 0 NR
b. Write the overall balanced chemical equation for the electrolysis of a diluted sodium chloride solution.	Skill level 3 3 2 1 0 NR

QUESTION SEVEN:

QUANTITATIVE CHEMISTRY

1. Oxalic acid is a toxic substance used in laundries to remove rust stains. Its composition is 26.7% carbon, 2.2% hydrogen and 71.1% oxygen by mass. Its molar mass is 90 g mol^{-1} .

[Given: $M(C) = 12 \text{ g mol}^{-1}$, $M(O) = 16 \text{ g mol}^{-1}$ and $M(H) = 1 \text{ g mol}^{-1}$]

Determine the empirical formula of oxalic acid.

	1							
Skill level 2								
2								
1								
0								
NR								

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK

•	C
ŀ	£,
ì	÷
1	٠
2	
Ç	
t	
ì	_
ï	
•	•
_	٠
:	3
ï	9
t	t
ř	^
ì	_
į	
_	_
ζ	
٠	Ľ
	•
۰	ì
۰	ė
t	•
Ū	
	_
Ū	Ę
١	
ì	
Š	•
ŝ	ς
Ē	
ŀ	•
2	2
	-
,	i
v	,

z
0.
03
2

				7		တ		(ഗ		-	4		c	ມ		^	ა			_		
			Fr 223	87	Cs 132.91) <u>g</u>	85.47	Ŗ	37	39.10	×	19	22.99	Na	ᆲ	6.94	<u> </u>	ω		1.008	Ι-	-	<u> </u>
			Ra 226.03	88	Ва 137.34	9 55	87.62	လ	38	40.08	Ca	20	24.31	Ma	12	9.01	Ве	4	=				2
		//	Lr 257	103	Lu 174.97	71	88.91	~	39	44.96	Sc	21											ω
			Unq	104	Ht 178.49	72	91.22	Zr	40	47.90	=!	22											4
89 Ac 227.03	57 La 138.91		Unp	105	180.95	73	92.91	R	41	50.94	<	23											5
90 Th 232.04	58 Ce 140.12		J.	106	183.85	74	95.94	Mo	42	52.00	Ö	24											6
91 Pa 231.04	59 Pr 140.91		Uns	107	186.2	75	98.91	Тc	43	54.94	<u>M</u>	25											7
92 U 238.08	60 Nd 144.24		Uno	108	190.2	76	101.07	R	44	55.85	Fe	26											∞
93 Np 237.05	61 Pm 146.92		Unn	109	Ir 192.2	77	102.91	R	45	58.93	င္ပ	27											9
94 Pu 239.05	62 Sm 150.35				195.09	78	106.4	Pd	46	58.71	Z.	28											10
95 Am 241.06	63 Eu 151.96				Au 196.97	79	107.87	Ag	47	63.54	ဥ	29											1
96 Cm 247.07	64 Gd 157.25				Hg 200.59	80	112.40	ဂ္ဂ	48	65.37	Zn	30											12
97 Bk 249.08	65 Tb 158.92				11 204.37	<u>1</u> %	114.82	5	49	69.72	Ga	31	26.98	≥ ;	3	10.81	Β.	S)	=				13
98 Cf 251.08	66 Dy 162.50				₽ b 207.19	2 %	118.69	Sn	50	72.59	Ge	32	28.09	<u>s:</u>	14	12.01	ဂ	6	<				14
99 Es 254.09	67 Ho 164.93				BI 208.98	? æ	121.75	Зb	51	74.92	As	33	30.97	ָס ;	15	14.01	Z	7	<				15
100 Fm 257.10	68 Er 167.26				210	J &	127.60	Te	52	78.96	Se	34	32.06	တ ႏ	16	16.00	0	œ	≤				16
101 Md 258.10	69 Tm 168.93				210	85	126.90	_	53	79.91	Ф	35	35.45	Ω:	17	19.00	т,	9	≦				17
102 No	70 Yb 173.04				222 722	J 86	131.30	Xe	54	83.80	즉	36	39.95	≱ ;	18	20.18	Ne :	10	4.00	•	≦		18