MARKER CODE				

Ø	TUD	ENT:	ENR	OLM	ENT :	NUM	BER	(SEI	1)

TONGA FORM SIX CERTIFICATE 2020 CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN)** on the top right-hand corner of this page.
- 2. This paper consists of **TEN QUESTIONS** and is out of 70 weighted scores.

QUESTION	STRANDS	TOTAL SKILL LEVEL
ONE	Atomic Trends	9
TWO	Shapes and Polarities	12
THREE	Solids and related properties	7
FOUR	Chemistry of oxides and chlorides	6
FIVE	Organic reactions	6
SIX	Isomerism	7
SEVEN	Unknown organic compounds and polymer	6
EIGHT	Rate of reactions	7
NINE	Equilibrium	6
TEN	Redox reactions and stoichiometry	4
	TOTAL	70

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more spaces for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each additional sheet, number the questions clearly and insert them in the appropriate places in this booklet.

NOTE: There is a group of the **Periodic Table of the Elements** provided on page **19**. The table gives the **Symbol**, **Atomic Number** and the **Relative Atomic Mass** of the elements. The Groups (columns) are numbered I, II, III, IV etc.

NOTE: The symbol M is used for molar mass. M (Na) = $gmol^{-1}$ and M (CO_2) = 44 $gmol^{-1}$.

6. Check that this booklet contains pages 2-19 in the correct order and that none of the pages is blank.

ATTEMPT ALL QUESTIONS IN THIS EXAMINATION PAPER.

Write the answer to each question in the correct spaces provided.

QUESTION ONE: Atomic Trends

(a)	(i)	Define the term electronegativity .		
` ,	()		Skill le	vel 1
			1	
			0	
			NR	
	(ii)	Explain why the electronegativity of chlorine is greater than that of phosphorus.		
			Skill le	vel 3
			2	
			1	
			0	
			NR	
(b)	Wri	te the electron arrangement using $\boldsymbol{s},\boldsymbol{p},\boldsymbol{d}$ configuration, for	Skill le	vel 2
			2	
		Cl	1	
			0	
		CI-	NR	

(c)	Nitrogen and phosphorus can both form ions with a charge of – 3. Nitrogen forms the nitride ion, N^3 –, and phosphorus forms the phosphide ion, P^3 –.		
	Explain why both of these elements form ions with the same charge of – 3.		
		Skill le	vel 3
		3	
		2	
		1	
		0	
		NR	

QUESTION TWO: Shapes and Polarities

(a) (i) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecules	HOC1
Lewis structure	
Approximate bond angle around the central atom	109°

Skill lev	vel 3
3	
2	
1	
0	
NR	

(ii) State the shape of HOCl molecule.

Skill level 1		
1		
0		
NR		

(iii) Explain why HOCl has the shape you have drawn in (a)(i) and bond angle of 109°:

T		
T	 	

Skill level 3	
3	
2	
1	
0	
NR	

(b) Three-dimensional diagrams for two molecules are shown below.

Molecule	F C ""H	F F
Name	difluoromethane	tetrafluoromethane
Polarity		

Skill le	Skill level 1		
1			
0			
NR			

Skill le	vel 1
1	
0	
NR	

(i) In the boxes above, identify the polarity of each molecule by writing either polar or non-polar.

Skill le	vel 3
3	
2	
1	
0	
NR	

QUESTION THREE: Solids and related properties

(a) (i) For each substance below, classify the bonding type of each substance as either **ionic** or **covalent**.

Substance	Bonding
magnagium avida MgO	
magnesium oxide, MgO	
carbon dioxide, CO ₂	

Skill lev	vel 2
2	
1	
0	
NR	

(ii)	Using the above examples, describe the difference between an ionic and a covalent bond.		
		Skill lev	vel 2
		2	
		1	
		0	
		NR	

(b) Choose the substance below that would sublime. Circle the correct answer.

MgO CO₂

Justify your choice with reference to structure, particles and bonding of this substance.

Skill le	vel 3
3	
2	
1	
0	
NR	

QUESTION FOUR: Chemistry of oxides and chlorides

(a) The oxides of the third period include the following.

From the list above, identify one oxide (in each case) which fits the description given.

(i) An oxide that reacts with water forming a strongly alkaline solution.

(ii) An oxide that is insoluble in water.

(iii) An oxide that has a simple molecular structure.

O		
NR		
Skill le	vel 1	
1		
0		
NR		
Skill level 1		

Skill level 1

Skill le	vel 1
1	
0	
NR	

(b) Chlorine forms compounds with phosphorus and sodium.

Compound	melting point (°C)
sodium chloride	801
phosphorous (III) chloride	-93.6
chlorine	-101.5

Explain why chlorine gas has a lower melting point than sodium chloride.

Skill level 3	
3	
2	
1	
0	
NR	

QUESTION FIVE: Organic reactions

(a) 2-Methylpropan-1-ol can also be converted to produce diesel and jet fuel. The first step in the process is the production of 2-methylpropene.

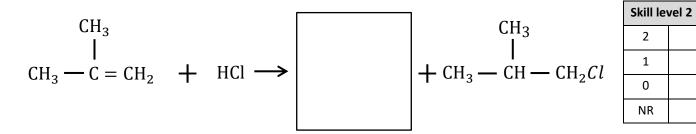
$$C_4H_{10}O(l) \rightarrow C_4H_8(g) + H_2O(g)$$

2-methylpropan-1-ol 2-methylpropene

Using the data below, calculate the enthalpy change, ΔH^{o} , in kJ mol⁻¹, for the production of 2-methylpropene from 2-methylpropan-1-ol.

I.
$$4C(s) + 5H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_4H_{10}O(l)$$
 $\Delta H = -335 \text{ kJ mol}^{-1}$

II.
$$4C(s) + 4H_2(g) \rightarrow C_4H_8(g)$$
 $\Delta H = -17 \text{ kJ mol}^{-1}$


III.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -242 \text{ kJ mol}^{-1}$

Skill le	vel 3
3	
2	
1	
0	
—	+

NR

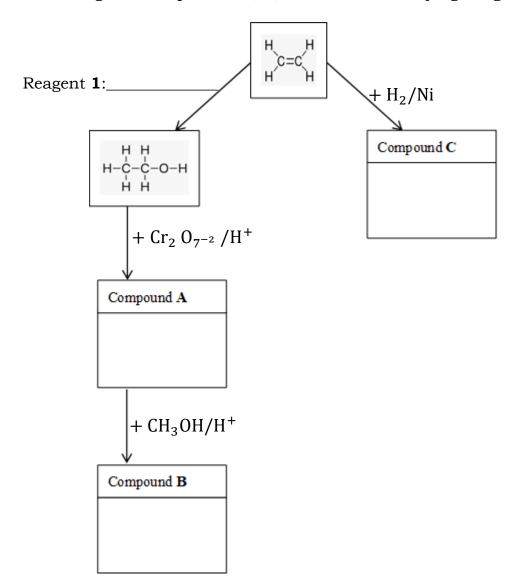
(b) Methylpropene will react with HCl to give two different haloalkane products.

Draw the major products.

(c) Methylpropan–2–ol is another isomer of 2-methylpropan–1–ol.

Which word below is used to classify this alcohol, methylpropan-2-ol.

primary secondary tertiary (Circle ONE)


Skill level 1	
1	
0	
NR	

QUESTION SIX: Isomerism

(a)	Stru	ıctural	isomers of the	molecular form	nula C ₂ H ₂ Cl ₂ are 1,	1-dichloroethene		
` ,			chloroethene.				Skill lev	vel 1
							1	
	(i)	Circle	the compound	l that can exist	as cis-trans isomer	·s.	0	
		1,1–di	chloroethene	1,2	2–dichloroethene		NR	
	(ii)	Draw '	the <i>ci</i> s and <i>tra</i>	ens isomers of t	he compound you c	circled in (a) (i).		
							Skill lev	vel 2
							2	
							1	
							0	
			(ris	trans		NR	
		cted ab		as <i>cis-trans</i> ison	ners while the othe	r structural		
							Skill le	vel 4
							4	
							3	
							2	
							1	
							0	
							NR	

QUESTION SEVEN: Unknown organic compounds and polymer

(a) Complete the following reaction scheme by drawing the structural formulae for the organic Compounds **A**, **B**, and **C**, and identifying Reagent **1**.

Skill level 4	
4	
3	
2	
1	
0	
NR	

(b)		yl chloride, H_2C =CHCl is a toxic chlorinated hydrocarbon. It is the nomer from which the widely used polymer polyvinyl chloride (PVC) is de.		
	(i)	Give the systematic name (IUPAC) for vinyl chloride.	Skill le	vel 1
	(1)	dive the systematic flame (101716) for vinyr emoride.	1	
			0	
			NR	
	(ii)	Draw the repeating of this polymer, PVC.		
			Skill le	vel 1
			1	
			0	
			NR	

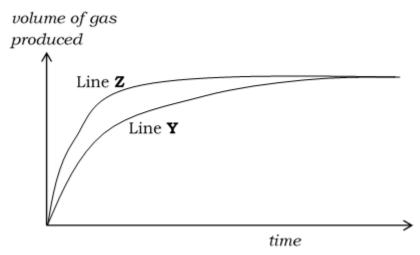
QUESTION EIGHT: Rate of reactions

The same volume and concentration of hydrochloric acid, HCl(aq), was added to each of three test tubes. Metal samples were added, according to the table and diagram below.

test tube 1 iron and acid	test tube 2 copper and acid	test tube 3 iron, copper and acid
25/1/20	\$500 p.	A STATE OF THE STA

Test tube	Contents	Observations
1	20 mL hydrochloric acid, HCl(aq), and	slow rate of bubbles
	1 g iron granules, Fe(s)	
2	20 mL hydrochloric acid, HCl(aq), and	no reaction
	1 g copper granules, Cu(s)	
3	20 mL hydrochloric acid, HCl(aq), 1 g	fast rate of bubbles
	iron granules, Fe (s), and 1 g copper	
	granules, Cu(s)	

(a) (i) Identify	the role of the copper	granules, Cu(s), in	test tube 3 .
------------------	------------------------	---------------------	----------------------


Skill level 1		
1		
0		
NR		

(ii) Describe the role of copper, Cu(s), in this reaction. You should refer to activation energy and collision theory in your answer.

Skill level 2	
2	
1	
0	
NR	

(b) In a second investigation, two 20 mL samples of 0.2 mol L⁻¹ sulfuric acid, H₂SO₄(*aq*), were placed in separate conical flasks. One of the flasks was placed in a water bath at 40°C and the other was placed in a water bath at 20°C. To each conical flask, 5.0 g of iron granules, Fe(s), were added. The gas produced was collected and measured over time and the following graph was produced

(i) Identify which line on the graph represents the reaction at 40°C, and describe why the two lines still finish in the same position.

Line: _____

Skill level 2	
2	
1	
0	
NR	

Skill level 2

2

0 NR

(ii) Describe the effect of increasing temperature on the rate of reaction. Refer to collision theory and activation energy in your answer.

QUESTION NINE: Equilibrium

(a) The Haber process combines nitrogen, $N_2(g)$, from the air with hydrogen, $H_2(g)$, to form ammonia, $NH_3(g)$, which is then used in the manufacture of fertiliser.

The equation for this process is:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(i)	Using equilibrium and the Le Chateliers' principle, explain why carrying out the Haber process at high pressure is an advantage to the manufacturer.		
		Skill le	•V
		3	T
		2	Ī
		1	
			+

(ii) In another part of the process, the ammonia, $NH_3(g)$, is removed as it is produced.

Explain using equilibrium and the Le Chateliers' principle why this would be an advantage to a manufacturer.

Skill le	vel 3
3	
2	
1	
0	
NR	

Skill level 3	
3	
2	
1	
0	
NR	

QUESTION TEN: Redox reactions and stoichiometry

(a) An experiment was conducted to determine the concentration of specific types of sugar called reducing sugars. This was carried out by titration with Fehling's solution.

Reducing sugars contain an aldehyde functional group.

Determine:

1	:۱	the amminiant for	10 of m	. d. 1 0 i n a . 1 :	acomo CII O
l	IJ	the empirical for :	muia or re	tuucing st	igais, C61112O6

Empirical Formula:

Skill level 1	
1	
0	
NR	

CL:II I ---- I 4

(ii) the **oxidation number** of carbon (C) in reducing sugars, $C_6H_{12}O_6$.

 $C_6H_{12}O_6$ _____

(b) The overall reaction that occurs with Fehling's solution and a reducing sugar is shown.

 $C_6H_{12}O_6$ + $2Cu^{2+}$ + H_2O \rightarrow $C_6H_{12}O_7$ + $2Cu^+$ + $2H^+$ reducing \$Fehling's\$ sugar \$solution\$

(i) Write the ion-electron equation for the **oxidation reaction**.

Skill level 1						
1						
0						
NR						

(ii) State the colour change that would be observed when reducing sugars are reacted with Fehling's solution.

Skill level 1								
1								
0								
NR								

c)	Complete the	he senter	nce:								
	In its reaction with reducing sugar ($C_6H_{12}O_6$), Fehling's solution (Cu^{2+}) is acting as an										
	oxidant / reductant (Circle ONE) Justify your answer.										
	Justify you	r answer									
						Skill le	Skill level 1				
						1					
						0					
						NR					

			-	7		တ		c	ת		4		•	w		2			-	_			
			Fr 223	87	က္က	55	85.47	공	37	39.10	⊼ ਫ	22.99	Na	⇉	6.94	<u> </u>		1.008	<u></u>	_	-	_	
			Ra 226.03	88	137.34	56	87.62	လူ	38	40.08	ည ၉	24.31	Mg	12	9.01	Be	=					2	
		//	Lr 257	103	Lu 174.97	71	88.91	≺:	39	44.96	S S	2										ω	
			Unq	104	Hf 178.49	72	91.22	Zr	40	47.90	T! 8	3										4	
89 Ac 227.03	57 La 138.91		Unp	105	180.95	73	92.91	S	41	50.94	< 5	8										5	
90 Th 232.04	58 Ce 140.12		Unh	106	183.85	74	95.94	M _o	42	52.00	သူ န	2										6	
91 Pa 231.04	59 Pr 140.91		Uns	107	age Re	75	98.91	T.	43	54.94	<u>M</u> 25	3										7	
92 U 238.08	60 Nd 144.24		Uno	108	90 90 90 90 90 90 90 90 90 90 90 90 90 9	76	101.07	2	44	55.85	FI 26	3										œ	
93 Np 237.05	61 Pm 146.92		Unn	109	19 19 2	77	102.91	공	45	58.93	ဂ ႏ	3										9	
94 Pu 239.05	62 Sm 150.35					78	106.4	Pd	46	58.71	Z &	3										10	
95 Am 241.06	63 Eu 151.96				Au 196.97	79	107.87	Ą	47	63.54	က က	3										⇉	
96 Cm 247.07	64 Gd 157.25			100:00	200 Hg	80	112.40	ည	48	65.37	کا د م	8										12	
97 Bk 249.08	65 Tb 158.92				704 37	81	114.82	- -	49	69.72	ට ද	26.98	≥	ವ	10.81	m 0	■					3	
98 Cf 251.08	66 Dy 162.50				207 19	82	118.69	Sn	50	72.59	ဌာန	28.09	<u>N</u>	14	12.01	ဂ ္						14	
99 Es 254.09	67 Ho 164.93			100:00	208.98 B:	83	121.75	လ	51	74.92	A s	30.97	ס	15	14.01	z	<					15	
100 Fm 257.10	68 Er 167.26				3 P	84	127.60	Te	52	78.96	ب 4 م	32.06	S	16	16.00	0 «	<u></u> ≤					16	
101 Md 258.10	69 Tm 168.93				26 ₹	85	126.90	<u> </u>	53	79.91	ភ ಜ	35.45	Ω	17	19.00	п«						17	
102 No 255	70 Yb 173.04				% ₽	86	131.30	Xe :	54	83.80	<u>ج</u> ۵	39.95	4	18	20.18	Ze d	4.00	2	Š	\\		18	

PERIODIC TABLE OF THE ELEMENTS