MAR	KER C	ODE	

s	TUD	ENT	ENR	OLM:	ENT	NUM	BER	(SEN	I)

TONGA FORM SIX CERTIFICATE 2018 CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN**) on the top right-hand corner of this page.
- 2. This paper consists of **SIX QUESTIONS** and is out of 80 Skill Level.

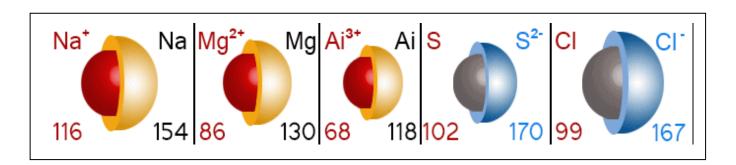
QUESTIONS	TOPICS	TOTAL SKILL LEVEL
ONE	ATOMIC STRUCTURE AND BONDING	20
TWO	QUANTITATIVE CHEMISTRY	10
THREE	INORGANIC CHEMISTRY	5
FOUR	REDOX	7
FIVE	PHYSICAL CHEMISTRY	10
SIX	ORGANIC CHEMISTRY	28
	TOTAL	80

- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. Use a **BLUE** or **BLACK** ball point pen only for writing. Use a pencil for drawing if required.
- 5. If you need more spaces for answers, ask the supervisor for extra paper. Write your **Student Enrolment Number (SEN)** on each addition sheet, number the questions clearly and insert them in the appropriate places in this booklet.
- 6. A group of the Periodic Table of the Elements is provided on **page 21**. The table gives the Symbol, Atomic Number and the Relative Atomic Mass of the elements. The Groups (columns) are numbered I, II, III, IV etc. NOTE: The symbol M is used for molar mass. M (Na) = 23 g mol-1 and M (CO2) = 44 g mol -1
- 7. Check that this booklet contains pages 2-23 in the correct order and that page 23 has been deliberately left blank.

ATTEMPT ALL QUESTIONS IN THIS EXAM PAPER.

Write the answer to each question in the correct spaces provided.

QUESTION ONE: ATOMIC STRUCTURE AND BONDING


1. Write the electron configuration in terms of principal energy levels and **s**, **p**.

d , :	f notations for the following atom and ion:	Skill le	vel 1
		1	
a.	Oxygen atom	0	
		NR	
		Skill le	vel 1
h	Oxide ion	1	

Oxide ion

NR

2. The table below shows the atomic radii with its corresponding ion radii. Study it carefully to answer the questions that follow.

a. Define the term atomic radii.

Skill lev	vel 1
 1	
0	
 NR	

b.	Explain the trend of the ionic radii across the period from sodium ion to chloride ion.		
		_	
		Skill le	vol 2
			Vers
		. 3	
		2	
		1	
		0	
		NR	

A piece of copper can be easily reshaped without breaking into smaller pieces and used for electrical wiring.

3. Explain the property identified by relating the property to the structure and bonding within the solid.

 Skill le	vel 3
 3	
 2	
 1	
 0	
 NR	

Sulfur	dioxide	is a	poisonous	gas	whereas	Silicon	dioxide	is ı	used	in	makir	ιg
glass.												

Skill le	evel
4	
3	
3 2	
2	

- 5. H_2CO is a colourless, acidic toxic gas and used for preservation.
 - a. Draw the shape for H₂CO and name it.

2	
1	
0	
NR	

Skill level 2

Name:

		5		
	b.	Use the molecular shape and electron distribution to determine whether H_2CO molecule is polar or non-polar.	er	
			- - -	
			Skill le	vei 3
			- 3	
			_ 2	
			- 1	
			- 0 NR	
6.	De:	scribe the types of intermolecular forces present in water (H ₂ O).		
			Skill le	vel 2
			2	
			1	
			0	
			NR	

QUESTION TWO: QUANTITATIVE CHEMISTRY

Oxalic acid is a toxic substance used by laundries to remove rust stains. Its composition is 26.7% carbon, 2.2% hydrogen and 71.1% oxygen by mass. Its molar mass is 90~g mol -1.

[Given: M(C) = 12 g mol-1, M(O) = 16 g mol-1 and M(H) = 1 g mol-1]

1. Calculate the empirical formula of oxalic acid

Skill le	vel 2
2	
1	
0	
NR	

- 2. 10mL of a standard potassium carbonate solution, concentration 0.04 molL⁻¹ was prepared. The **aliquot** was then transferred into a conical flask. This sample was then titrated with hydrochloric acid of unknown concentration. The indicator (methyl orange) showed that the **end point** was reached when 25.0mL of hydrochloric acid was added.
 - a. Define the following terms:

i.	aliquot:	Skill lev	vel 1
		1	
		0	
		NR	

ii. end point:

Skill le	vel 1
 1	
0	
 NR	

arbonate and hydrochloric acid.	Skill level
	1
	0
	NR
alculate the number of moles of hydrochloric acid in the 25 m	Skill level 3 2 1 0 NR
Calculate the concentration of hydrochloric acid.	

QUESTION THREE:

INORGANIC CHEMISTRY

1. Study the period 3 compounds on the periodic table below to clearly explain the **trend form from basic oxides to acidic oxides** as it relates to the position of the element in the periodic table.

Group 1	2	13	14	15	16	17
Li ₂ O	BeO	B ₂ O ₃	CO2	N ₂ O ₃ N ₂ O ₅	0	OF ₂
Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₃ P ₂ O ₅	SO ₂ SO ₃	CI ₂ O CI ₂ O ₇
K ₂ O	CaO	Ga ₂ O ₃	GeO ₂	As ₂ O ₅ As ₂ O ₃	SeO ₂ SeO ₃	Br ₂ O
Rb ₂ O	SrO	In ₂ O ₃ In ₂ O	SnO ₂	Sb ₂ O ₅ Sb ₂ O ₃	TeO ₂	I ₂ O ₅
Cs ₂ O	ВаО	TI ₂ O	PbO ₂ PbO	Bi ₂ O ₃	Ро	At

_				
-				
_			-	
-				

·		
	Skill le	vel 3
	3	
	2	
	1	
	0	
	NR	

2. Relate the melting points of period 3 elements chloride to their structure and bonding.

Formula	NaCl	MgCl ₂	AlCl ₃ / AlCl ₆	SiCl ₄	PCl ₃ / PCl ₅		
Melting Point °C	801	714	178 sublimes	-70	-112		
						•	
						Skill le	vel 2
						2	
						1	
						0	
						ND	

QUESTION FOUR:

REDOX

1. Due to the rise of road accidents in Tonga, the Ministry of Police is now using breathalyser testing. Drivers are required to blow through a tube containing orange crystals of potassium dichromate (K₂Cr₂O₇) with concentrated sulfuric acid. Under acidic conditions, alcohol in the breath will change the colour of the crystals. The concentrated sulfuric acid also generates heat as it reacts with moisture from the breath sample. This heat increases the speed of the oxidation reaction. A driver is considered to be over the limit if there is sufficient alcohol to change the colour of the crystals.

The two half equations for the above reaction are:

- i. $Cr_2O_7^{2-}$ Cr^{3+}
- ii. CH₃CH₂OH → CH₃COOH
- a. Name the common oxidizing agent use in the explanation above.

SKI	Skill level 1					
1	L					
()					
N	R					

Skill lovel 1

b.	Define the term Reductant.	Skill lev	vel 1
		1	
		0	
		NR	

	11					
c.	Identify the reductant in the chemical reaction above.	0				
		NR				
_		Skill lev	el 1			
d.	State the change of colour of the orange crystals if the driver is over the limit of sufficient alcohol.	1				
	mint of sufficient alcohol.	0				
		NR				
e.	Balance and combine the two half-equations above and write the full balanced equations for the redox reactions.					
		Skill lev	/el 3			

Skill lev	vel 3
3	
2	
1	
0	
NR	

QUESTION FIVE:

PHYSICAL CHEMISTRY

Given the following thermochemical equations,

i.
$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(1)$$

$$^{\Delta}\text{H}^{\circ} = -571.5 \text{ kJ}$$

$$4HNO_3(1) \qquad \longrightarrow \qquad 2N_2O_5(g) + 2H_2O(1)$$

$$^{\Delta}\text{H}^{\circ} = 153.2 \text{ kJ}$$

iii.
$$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) + \frac{1}{2} H_2(g) \longrightarrow HNO_3(l)$$
 $\Delta H^0 = -174 \text{ kJ}$

$$\Delta H^{\circ} = -174 \text{ kJ}$$

a. Apply Hess Law to calculate the **enthalpy change** (^Ho) for the reaction

$$2N_2(g) \ + \ 5O_2(g) \ \longrightarrow \ 2N_2O_5(g)$$

			61 111 1	
			Skill le	vel 3
			3	
			2	
			1	
			0	
			NR	
			L	ı

b. Define the term enthalpy change.

Skill lev	/ei 1
 1	
 0	
NR	

The diagram below shows how Zinc reacts with 2molL^{-1} hydrochloric acid. Zinc powder reacts rapidly with 2molL^{-1} hydrochloric acid where as Zinc granule reacts slowly with 2molL^{-1} hydrochloric acid.

2.	terms of simple collision theory.		
		Skill le	vel 2
		2	
		1	
		0	
		NR	

The equation below represents the production of ammonia through the Haber process. Industries are trying to produce a lot of ammonia due to the heavy demand of hospitals and other economic businesses.

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ The forward reaction is exothermic.

	per process for the increase in production of ammonia gas to fulfill the avy demands of the consumers.		
1100			
		Skill le	V
		4	
		3	Ť
		2	T
		1	t
		0	Ŧ

QUESTION SIX:

ORGANIC CHEMISTRY

Study the structure given below carefully and answer the question that follow.

$$CH_3OH^{(iii)}$$

$$C\equiv CH_{(iv)}$$

1. Name the **functional group** represented by:

Structure	Name
(i)	
(ii)	
(iii)	
(iv)	

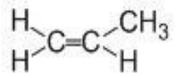
Skill level 1	i	ii	iii	iv
1				
0				
NR				

- 2. Fats and oils are triglycerides. Triglycerides are esters. The animal fat and lard is a triglyceride of glycerol and the saturated fatty palmitic acid $(CH_3(CH_2)_{14}COOH.$
 - a. Draw the structure of lard (triglyceride formed).

	_	
		9
	T	_

Skill lev	vel 1
1	
0	
NR	

Lard is also important in the manufacturing of soap.


	n how soap is made from Lard. Jist (or can) include:		
10011	The reagents required		
	i. Draw the structural formula of soap		
	ii. State how the chemical nature of soap enhances its rote as a		
	cleaning agent.		
		Skill le	vel
		3	L
		2	
		1	
			<u> </u>
		0	

NR

3.	A Small Industries manager is trying to construct and run an industry in making plastic wraps and water drainage pipes due to the needs of the people in Tonga but is confused as to the process of making plastics and pipes. With your knowledge on Polymerisation process, discuss clearly using the structural formula for the production of plastic wraps and drainage pipes.	s.	
		Skill le	vel 4
		4	
		3	
		2	
		1	
		0	
		NR	

			Skill
			Skill 3

5. Study the structure below to answer the questions that follow.

The above molecule was reacted with hydrogen bromine.

a. Draw the structure for the product formed.

Skill lev	vel 1
1	
0	
NR	

b. Name the product formed using IUPAC rules

the the product formed using topac rules.	Skill lev	/el 1
	1	
	0	
	NR	

Skill level 3

6. Write **equations** for the addition reaction of **ethyne with water** and name the final product formed. The final product consists of single bonds.

		_
Г		7
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		1
		1
- 1		П
		1
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
		П
- 1		П
		1
		П
		1
		1
- 1		П
		1
		1
- 1		П
		1
		1
		1
		1
- 1		П
	Name of final product:	1
	Name of final product:	1
		1
- 1		П
- 1		-

Alcohols undergo oxidation reactions by reacting with potassium permanganate. Study the structures of the different types of alcohol below and answer the question that follow.

$$\begin{array}{cccc} & & & \text{CH}_3 \\ & & \text{CH}_3-\text{CH}-\text{CH}_3 & \text{CH}_3-\text{C-CH}_3 \\ \text{CH}_3-\text{CH}_2\text{OH} & \text{OH} & \text{OH} \\ & & \text{II} & & \text{III} \\ \end{array}$$

7. Deduce the products formed from the structures above when undergoing oxidation reaction.

Skill lev	vel 3
3	
2	
1	
0	
NR	

8. Given below are structures of different organic compounds.

a. Name **Compound B.**

IUPAC name:

b. Identify the functional group in $\boldsymbol{Compound}\ \boldsymbol{A}.$

Skill level 1

1

0

NR

Skill level 1

c. State the acidic behavior of **Compound B** and write the equation to show the reaction of **Compound B** with aqueous sodium hydroxide.

Skill lev	vel 3
3	
2	
1	
0	
NR	

PERIODIC TABLE

I																		VIII
hydropin 1 H	II												III	IV	v	VI	VII	He
Li	Be												5 B	C 12:011	7 N	0.000 est	F 18.000	Ne
Na 22,990	Mg												AI AI	Si 20.006	P 30-974	16 S 32 668	CI No.453	18 Ar 35 048
19 K	Ca		SC 41.966	22 Ti	23 V 50/562	24 Cr	Mn Sd Sold	Fe	27 Co	28 Ni	Cu	Zn	Ga Ga GA ZZZZ	Ge	As ZL 502	Se Number	35 Br 79:504	Kr
Rb	Sr Sr		39 Y	2000 AU Zr 91,724	Nb	Mo ss sa	TC	Ru 101 07	Rh	Pd 106.42	Ag	Cd	In	Sn	Sb tri X	52 Te	53 	Xe
Cs	Ba	57-70 *	71 Lu 174,97	Hf 171.40	73 Ta	74 W 163.64	75 Re	76 Os	77 Ir	Pt 106.08	Au tales	Hg	81 TI 204.38	Pb	Bi Bi	Po	#5 At	Rn
Fr	Ra	89-102 * *	Lr	Rf	105 Db	Sg	Bh	HS	Mt	Uun	Uuu PZZII	Uub		Uuq				

*Lanthanide series

* * Actinide series

130.91	160.12	Pa	144.24	29.452	150.36	151.96	157.25	258.93	162.50	164.93	167.26	105.93	173.04
La	Ce	Pr	Nd	Pm	Sm	Eu	Ğd	Tb	Dy	Ho	Er	Tm	Yb

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK.