MAR	KER C	ODE	

Stu	ıdent	t Enr	olme	nt N	umb	er (SI	EN)	

TONGA FORM SIX CERTIFICATE 2017 CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 3 Hours

INSTRUCTIONS:

- 1. Write your **Student Enrolment Number (SEN**) on the top right-hand corner of this page.
- 2. ALL SECTIONS ARE COMPULSORY in this examination booklet.
- 3. Additional sheets of paper can be obtained from your supervisor if necessary. Write your **Student Enrolment Number (SEN)** on each addition sheet, number the questions clearly and insert them in the appropriate part of this booklet.
- 4. You are expected to apply the principles and knowledge learned from the Chemistry curriculum taught throughout this academic year.
- 5. This examination consists of **FIVE** QUESTIONS.

	QUESTIONS	Pages	Total Weight
1	Atomic Structure, Bonding and Shapes of Molecules	2-5	18
2	Quantitative Chemistry	6-7	13
3	Organic and Inorganic Chemistry	8-10	19
4	Principles and Physical Chemistry	11-13	15
5	Oxidation and Reduction	14-15	10
		35	75

6. Check that this booklet contains pages 2-15 in the correct order and that none of the pages is blank.

ATTEMPT ALL QUESTIONS IN THIS EXAM PAPER.

Write the answer to each question in the correct spaces provided.

QUESTION 1: ATOMIC STRUCTURE, BONDING & SHAPES OF MOLECULES

notat	uon.	Skill le
		1
		0
		NR
Name level.	e the atom having FIVE (5) valence electrons in the third energy	
10 001.		Skill le
		1
		0
		NR
Whic	ch of these three ions is produced by an atom from group 1 . Ions	
	ch of these three ions is produced by an atom from group 1 . Ions ⁷²⁺ and Z⁺.	Skill le
		Skill le
		Skill le
		Skill le
X-, Y	72+ and Z +.	Skill le
X-, Y		Skill le
X-, Y	72+ and Z +.	Skill le
X-, Y	72+ and Z +.	Skill le 1 0 NR

		_
		Skill I
		- 3
		_ 2
		_ 1
		0
		NR
	a, a Form 6 Chemistry student was given and told to analyse two	
solu Sol	utions having the same molar masses as follows. Ition A: Diethyl ether, Mr = 74 g/mol (CH ₃ - CH ₂ - O - CH ₂ - CH ₃ Ition B: Butan - 1 - ol, Mr = 74 g/mol (CH ₃ - CH ₂ - CH ₃ Describe the type of intermolecular forces in each of the given	-
solu Solu Solu	tions having the same molar masses as follows. It ion A: Diethyl ether, $Mr = 74 \text{ g/mol}$ ($CH_3 - CH_2 - O - CH_2 - CH_3$) It ion B: Butan - 1 - ol, $Mr = 74 \text{ g/mol}$ ($CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH$	-
solu Solu Solu	utions having the same molar masses as follows. Ition A: Diethyl ether, Mr = 74 g/mol (CH ₃ - CH ₂ - O - CH ₂ - CH ₃ Ition B: Butan - 1 - ol, Mr = 74 g/mol (CH ₃ - CH ₂ - CH ₃ Describe the type of intermolecular forces in each of the given	-
solu Solu Solu	utions having the same molar masses as follows. Ition A: Diethyl ether, Mr = 74 g/mol (CH ₃ - CH ₂ - O - CH ₂ - CH ₃ Ition B: Butan - 1 - ol, Mr = 74 g/mol (CH ₃ - CH ₂ - CH ₃ Describe the type of intermolecular forces in each of the given)H)
solu Solu Solu	utions having the same molar masses as follows. Ition A: Diethyl ether, Mr = 74 g/mol (CH ₃ - CH ₂ - O - CH ₂ - CH ₃ Ition B: Butan - 1 - ol, Mr = 74 g/mol (CH ₃ - CH ₂ - CH ₃ Describe the type of intermolecular forces in each of the given	OH)
solu Solu Solu	utions having the same molar masses as follows. Ition A: Diethyl ether, Mr = 74 g/mol (CH ₃ - CH ₂ - O - CH ₂ - CH ₃ Ition B: Butan - 1 - ol, Mr = 74 g/mol (CH ₃ - CH ₂ - CH ₃ Describe the type of intermolecular forces in each of the given	Skill

ii.	Compare the type of intermolecular forces in the two solutions are say which has the higher boiling point.	d	
		_	
		_	
		_	
		Skill le	vel 3
		- 3	
		_ 2	
		_ 1	
		0	
		NR	
	cribe the physical property that makes copper a suitable element electrical wires.	_	
		Skill lev	vel 2
		2	

- h. Nitric acid (**HNO**₃) a colourless liquid is one of the strongest mineral acids. It is used in the production of ammonium nitrate for fertilizers, making plastics, and in the manufacture of dyes.
 - i. Draw the **Lewis structure** of Nitric acid (**HNO**₃).

Skill lev	vel 1
1	
0	
NR	

1 0 NR

ii.	Deduce the final shape of Nitric acid (HNO ₃) using electron pair	r	
	repulsion theory.		
		Skill le	vel 3
		3	
		2	
		1	
		0	
		ND	

QUESTION 2: QUANTITATIVE CHEMISTRY

a. Vinyl ether, also known as Vinethene (pharmaceutical trade name) is a clear, nearly colorless, volatile liquid which was briefly used as an inhalation anesthetic. I is composed of 68.54% carbon (C), 8.63% hydrogen (H), and 22.83% oxygen (O) by mass.

Calculate its empirical formula.

Skill lev	vel 2
 2	
1	
0	
NR	

b. Distinguish between *empirical formula and molecular formula* giving *suitable examples*.

_	Skill lev	vel 3
_	3	
_	2	
_	1	
_	0	
	NR	

c. The reaction of zinc with sulfuric acid is shown below but one of the product is unknown and is written as **X**.

$$Zn_{(s)}$$
 + $H_2SO_{4 (aq)}$ \longrightarrow $H_{2 (g)}$ + \boldsymbol{X}

i. Complete the above reaction equation by writing the correct *chemical formula* of the unknown product *X*.

Skill le	vel 1
1	
0	
NR	

In an experiment, 250 g of zinc (Zn) is reacted with access sulfuric

ii.

		Skill 4
		3
		2
		1
		0
		NR
hyd: 25.0	tration reveals that 11.6 mL of 3.0 M standard solution of rochloric acid (HCl) is required to neutralise the sodium by 00 mL of NaOH solution.	ydroxide in
hyd: 25.0	rochloric acid (HCl) is required to neutralise the sodium h	ydroxide in
hyd: 25.0	rochloric acid (HCl) is required to neutralise the sodium hy	
hyd: 25.0	rochloric acid (HCl) is required to neutralise the sodium hy	Skill
hyd	rochloric acid (HCl) is required to neutralise the sodium hy	Skill 1
hyd: 25.0	rochloric acid (HCl) is required to neutralise the sodium hy	Skill
nyd: 25.0	rochloric acid (HCl) is required to neutralise the sodium hy 00 mL of NaOH solution. Define the term standard solution .	Skill
yd: 5.0	rochloric acid (HCl) is required to neutralise the sodium hy 00 mL of NaOH solution. Define the term standard solution .	Skill 1 0 NR
/di	rochloric acid (HCl) is required to neutralise the sodium hy 00 mL of NaOH solution. Define the term standard solution .	Skill 1 0 NR
ydi 5.0	rochloric acid (HCl) is required to neutralise the sodium hy 00 mL of NaOH solution. Define the term standard solution .	Skill

QUESTION 3: ORGANIC AND INORGANIC CHEMISTRY

a. Draw the structures of cis-2-butene and trans-2-butene

 Skill level 2	
2	
1	
0	
NR	

b. Use the IUPAC nomenclature system to name the following structure.

Write an equation for the substitution reaction of ethane with chlorine.

Skill lev	vel 3
3	
2	
1	
0	
NR	

c. Write an equation for the addition reaction of 1-propene with water.

Skill level 3	
3	
2	
1	
0	
NR	

d. Given below are structures of different organic compounds.

i. Name compound C

Skill level 1

1

0

NR

IUPAC name:

ii. Which of the above compounds is an **aldehyde**?

Skill lev	vel 1
1	
0	
NR	

iii. Name the *major group of organic compound* where compound D belongs to.

Skill lev	vel 1
1	
0	
NR	

Draw and name the product formed from the oxidation of

compound B using IUPAC naming system.

iv.

	Skill le	evel 2
	2	
	1	
	0	
IUPAC name:	NR	
State the unique physical property of all esters	Skill le	vel 1
State the unique physical property of all esters.	1	
	0	
	NR	
of the element in the periodic table.		
	Skill le	vei 3
	3 2	
	1	
	0	
	NR	

QUESTION 4: PRINCIPLES OF PHYSICAL CHEMISTRY

a. When steam is passed over hot charcoal at 1000 °C, carbon monoxide and hydrogen gas are produced. The equation for the *net reaction* is as follows.

$$C_{(s)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_2_{(g)}$$

i. Evaluate the *enthalpy change value* of the above reaction using the following data.

Reaction A:
$$CO_{2(g)} \longrightarrow C_{(s)} + O_{2(g)}$$
 $\triangle H^{\circ} = 393.5 \text{ kJ/mol}$

Reaction B:2CO (g) +O_{2 (g)}
$$\longrightarrow$$
 2CO_{2 (g)} \triangle H° = - 566 kJ/mol

Reaction C:H_{2 (g)}+ O_{2 (g)}
$$\longrightarrow$$
 2H₂O (g) \triangle H^o = - 483.6kJ/mol

Skill lev	vel 4
4	
3	
2	
1	
0	
NR	

ii.	State whether the net reaction is endothermic or exothermic.

Skill lev	vel 1
1	
0	
NR	

iii. Construct an energy profile diagram for **Reaction A**. In the diagram, label the activation energy as **EA** and energy change as ΔH .

Skill le	vel 2
2	
1	
0	
NR	

Explain <i>the</i>	role of a cata	tyst in a che	emicai reac	tion.		
					Skill le	V
					 3	
					 2	Ī
					 1	Ť
					0	t

c. Consider the following *equilibrium* reaction

$$N_2O_{(g)}+NO_{2(g)} \longleftrightarrow 3NO_{(g)} \Delta H^{\circ} = +155.7 \text{ kJ}$$

i. Define the term **dynamic equilibrium**.

Skill level 1	
 1	
 0	
NR	

NR

ii.	Using Le Chatlier's principle, predict the direction in which the reaction will be shifted and explain how the concentration of nitrogen dioxide NO_{2 (g)} will be affected if the volume of the contains increased at constant temperature.	iner	
		Skill le	vel 4
		4	
		3	
		2	
		1	
		0	
		NR	

QUESTION 5: OXIDATION AND REDUCTION

a. Define the term oxidation reaction in terms of electron transfer.

Skill level 1	
 1	
 0	
NR	

Skill level 3

3

1 0 NR

b. Explain *oxidation and reduction reactions* in terms of changes in oxidation states (numbers).

c. Consider the following unbalanced redox reaction.

$$N_i + NO_3^- \longrightarrow N_i^{2+} + NO$$

i. Identify the *reductant* in the above redox reaction.

Skill level 1	
1	
0	
 NR	

ii. Define the term **oxidant.**

Skill level 1	
1	
0	
NR	

iii. **Balance** the above redox reaction showing all workings clearly.

Skill level 3	
3	
2	
1	
0	
NR	

d. Name **ONE** (1) *common oxidizing agent* found in the laboratory.

Skill level 1		
1		
0		
NR		