MARKER CODE				

Student Enrolment Number									

TONGA FORM SIX CERTIFICATES 2016 CHEMISTRY

QUESTION AND ANSWER BOOKLET

Time allowed: 2 Hours

INSTRUCTIONS

1. Write your **Student Enrolment Number (SEN**) on the top right-hand corner of this page.

QUESTIONS AND TOPICS	Pages	Time (mins)	Total
QUESTION 1 Electron Configuration and Periodic Trends	2	14	8
QUESTION 2 Titration and Molecular Formula	3 — 5	15	9
QUESTION 3 Lewis Structures and Physical Properties	6-9	16	10
QUESTION 4 Organic Compounds	10 — 13	17	13
QUESTION 5 Oxides and Unknown Inorganic Ions	14 — 16	14	8
QUESTION 6 Redox Reactions and Corrosion	17 — 19	14	8
QUESTION 7 Organic Reactions and Tri-esters	20 — 22	16	11
QUESTION 8 Equilibrium Principles and Rate of Reactions	23 — 25	14	8
TOTAL		120	75

- 2. Follow instructions and answer all questions in the spaces provided in this booklet.
- 3. Check that this booklet contains pages 2-27 in the correct order and that page 26 has been deliberately left blank.
- 4. Periodic table has been provided at the end of the booklet (page 27).

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR BEFORE YOU LEAVE THE EXAMINATION ROOM.

QUESTION ONE: Electron Configuration and Periodic Trends

a. Complete the following table.

Symbol	Electron configuration (s, p , d , f notation)
S	
O ² -	

Skill level 1		
1		
0		
NR		

Skill level 1		
1		
0		
NR		

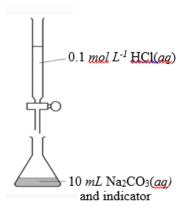
b. Use the following data to explain the difference between the radii of the Cl atom and the Cl- ion.

Atom or ion	Radius/ pm		
О	60		
O ²⁻	124		

Skill level 3		
3		
2		
1		
0		
NR		

c. By taking note of the electronegativity of the oxygen atom and the sulfur atom, describe their probable types of bonds.

Atom	Electronegativity
О	3.44
S	2.58


Skill level 3		
3		
2		
1		
0		
NR		

QUESTION TWO: Titration and Molecular Formula

Sodium carbonate solution can be added to the water in swimming pools to neutralise the acidic effects of chlorine.

A student carried out a titration experiment to determine the concentration of a sodium carbonate solution.

	Rough titre	1 st titre	2 nd titre
Initial burette reading/mL	0.0	0.2	1.5
Final burette reading/ mL	16.5	16.1	17.6
Volume used/ mL	16.5	15.9	16.1

a. Using the results in the table, calculate the average volume, in mL, of hydrochloric acid required to neutralise the sodium carbonate solution.

Skill lev	vel 1
1	
0	
NR	

The equation for the reaction is

$$2HC1 + Na_2CO_3 \rightarrow 2NaC1 + CO_2 + H_2O$$

b. Using your answer from part (a) calculate the concentration, in $mol L^{-1}$, of the sodium carbonate solution.

Show your working clearly.

Skill lev	vel 2
2	
1	
0	
NR	

- c. A student carried out an experiment to determine the value of **x** in the formula of hydrated sodium bromide, NaBr.**x**H₂O. Hydrated sodium bromide is heated until all the water of crystallization is removed. Anhydrous sodium bromide, NaBr, is formed. The student was given the following instructions.
 - Weigh a sample of the hydrated sodium bromide crystals in a pre-weighed crucible.
 - Heat the crucible containing the sample to remove the water of crystallization.
 - Allow the crucible to cool and then reweigh the crucible.

The student's results are shown in the table below.

	Mass/ g
Mass of crucible empty	18.02
Mass of crucible + contents before heating	21.49
Mass of crucible + contents after heating	20.51
Mass of contents before heating	3.47

Calculate the value of **X**. Give your answer to significant two figures.

Sk	ill lev	el 3
_	-	
	3	
	2	
	1	
	0	
	NR	
	иN	

d.

Soaiu	\mathbf{x} in oxygen to give a pale yellow solid \mathbf{x} .		
i.	1.73 g of sodium reacts with $1.20 g$ of oxygen.		
	Find the molecular formula of X .		
		Skill le	
			vei 3
		3	
		2	
		1	
		0	
		NR	

QUESTION THREE: Lewis Structures and Physical Properties

a. Define first ionisation energy.

Skill level 1	
1	
0	
NR	

b. Sulfur and nitrogen both bond with hydrogen atoms and fluorine atoms to form H_2S and NF_3 respectively. However, the molecules have different shapes.

The following table shows the Lewis structures for the molecules H_2S and NF_3 .

Molecule	H_2S	NF ₃
Lewis structure	H H	F—N—F

Explain why these molecules have different shapes. In your answer include:

\bullet the s	shapes	of	H_2S	and	NF_3 .
-----------------	--------	----	--------	-----	----------

Skill level 3	
3	
2	
1	
0	
NR	

c. The 3-dimensional diagrams of two molecules are shown below.

Polar

 CF_4

Circle the word that describes the polarity of each of the molecules CF_4 and CHF_3 .

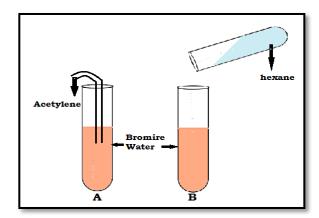
Non-polar

CHF ₃	Polar	Non-polar
For each molecule, just		-
, 3	3 3	

Skill lev	Skill level 3	
3		
2		
1		
0		
NR		

d. Consider each of the solids lead, Pb, and iodine, I2.

Complete the table below by identifying which of these solids have the listed physical properties:


Physical properties	Solid
The solid dissolves readily in water and is not ductile.	
The solid is insoluble water and is ductile.	

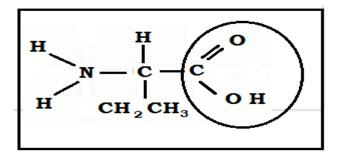
Justify your choices in terms of the particles, structure, and bonding of these solids. You may use diagrams in your justification.

Skill level 3	
3	
2	
1	
0	
NR	

QUESTION FOUR: Organic Compounds

a. Acetylene (Ethyne) is bubbled into a bromine water test tube **A** and hexane liquid is poured into a bromine water test tube **B**.

Describe the expected observations in test tube ${\bf A}$ and ${\bf B}$.


Skill level 1	
1	
0	
NR	

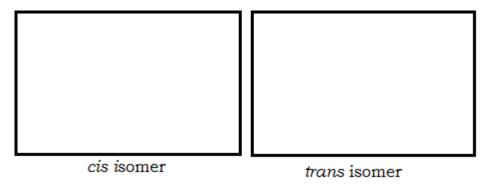
b. Complete the following table to show the structural formula and IUPAC (systematic) name for each compound.

Structural formula	IUPAC (systematic) name
	3-chloro-pentan-2-one
CI 	

Skill level 2	
2	
1	
0	
NR	

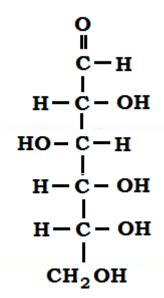
d. Name the functional group that is circled below.

Skill level 1	
1	
0	
NR	


e. The structures of the three organic compounds are shown below.

Compound A	CH ₃ —CCl=CCl—CH ₃
Compound B	CH ₃ —CH ₂ —CCl=CCl ₂
Compound C	CH ₃ —CH ₂ —CCl ₂ —CH ₃

Explain why compound **A** can exist as geometric (*cis* and *trans*) isomers, but compounds **B** and **C** cannot.


In your answer you should:

- draw the geometric (*cis* and *trans*) isomers of compound **A** in the boxes below
- explain the requirements for geometric (*cis* and *trans*) isomers by referring to compounds **A**, **B** and **C**.

Skill le	vel 3
Skill le	vel 3
3	vel 3
	vel 3
3	vel 3
3	vel 3

f. The following is the open glucose structure:

Describe how to test for the presence of the aldehyde group.

For your answer:

- identify the reagent to use
- describe any observations that would be made
- identify the type of reaction that occurs
- identify the organic product of any reaction.

 Skill lev	vel 3
 3	
 2	
1	
 0	
NR	

QUESTION FIVE: Oxides and Unknown Inorganic Ions

a.	acid-1	base pro	pertie	s. If we lis	st the oxide	es of a gi	ven per	oxides is their riod, e.g. Period 3, acter		
	i.	List: N	la₂O	MgO	Al_2O_3	SiO_2	SO_2	SO_3		
		Describ	oe the	orderly pı	rogression	of their a	acid-ba	se character.		
									Skill le	vel 2
									2	
									1	
acid-base pro we find an ore i. List: N Describ							0			
									NR	
	ii.	Write e	quatio	n for the	reaction of	alumini	um oxi	de, Al ₂ O ₃ , with		
		sodium	ı hvdı	oxide:					Skill le	vel 1
			3						1	
									0	
									NR	
		berdess	hlania	a aid.					Skill le	vel 1
		hydroc	:1110110	aciu:					1	
									0	

b.	A sample of	of water	is requ	uired to	be to	ested fo	or the 1	presence	of

- aluminium ions, Al³⁺
- zinc ions, Zn⁺²
- iron(II) ions, Fe²⁺
- copper (II) ions, Cu²⁺

It is known that the sample of water does not contain any other positive ions or cations.

The only available reagent is aqueous ammonia, $NH_3(aq)$.

Design a method that could be carried out to distinguish the above cations.

In your answer, you should:

- identify any precipitates formed or complex ions formed linked these to any observations that would be made
- identify the type of reaction that occur
- explain how the results are used to determine which ions are present or absent

• equations showing the precipitates or complex ions formed

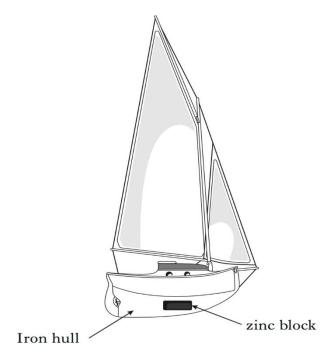
-	9		-	
		·		

Skill le	vel 4
 4	
 3	
2	
1	
0	
 NR	

QUESTION 6: Redox Reactions and Corrosion

ii.

a. When sulfur dioxide gas (SO₂) is bubbled into a solution of acidified potassium dichromate solution, a colour change is observed. The unbalanced equation for this reaction is given below.


$$\text{Cr}_2\text{O}_7$$
 ²⁻ + $\text{SO}_2 \rightarrow \text{SO}_4$ ²⁻ + Cr ³⁺

:	Idontif.	+1	reductant	224	arridant	:	+hia	noostion
1.	identily	uic	reductant	anu	uxiuaiii	111	$u_{11}s$	reaction

edox equat	overall i	action give	an above.

Skill lev	vel 3
3	
2	
1	
0	
NR	

b. A boat builder attached zinc blocks to the iron hull of his boat.

The boat builder wrote his observation in a log book that:

- the rate of corrosion increased when his iron boat was in sea water
- zinc blocks attached to iron boat helped prevent corrosion

Discuss the occurrence of corrosion of iron in the setting given above. In your answer, you should:

- identify any products formed and link these to any observations that bodybuilder made
- identify the type of reaction that occurs
- explain why the rate of corrosion increase when iron boats are in sea water
- explain why the attaching zinc blocks to iron boats help prevent corrosion
- include any related equations

Skill le	vel 4
 4	
 3	
2	
1	
0	
 NR	

QUESTION 7: Organic Reactions and Tri-ester

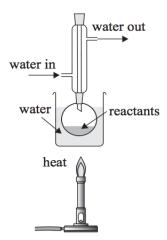
a. Write the balanced chemical equations for the reactions of:

i. Hydrochloric acid and ethene.

Sk	Skill level 2		
	2		
	1		
	0		
N	١R		

ii. propene and chlorine then propyne and water.

2	
1	
0	
NR	


Skill level 3

b. A tri-ester has the following structure:

This tri-ester is described as unsaturated.

•	Describe a chemical test that can be used to show that the moleculis unsaturated. Give any observations, and state the type of reaction occurring.		
		-	
		Skill le	vel 2
		- 2	
		- 1	
		_ 0 NR	
i.	Draw the structural formulae of the organic products formed by hydrolysis of this tri-ester using aqueous sodium hydroxide solution.		
		Skill le	vel 2
		2	
		1	
		0	
		NR	

iii. Describe why the equipment below is used for hydrolysis of the tri-ester.

Skill lev	vel 2
2	
1	
0	
NR	

Equilibrium Principles and Rate of Reactions QUESTION 8:

The following chemical equation represents a reaction that is part of a. the Contact Process which produces sulfuric acid.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $\Delta H = -200 \text{ kJ mol}^{-1}, K_c = 4.32 \text{ at } 600^{\circ}\text{C}$

The reaction above was carried out again at 400°C. i.

> Describe, using equilibrium principles, how the change in temperature will affect:

- the value of K_c
- the position of equilibrium.

Skill lev	Skill level 2	
2		
1		
0		
NR		

b. Hydrochloric acid was reacted with calcium in an experiment to investigate factors affecting the rate of a chemical reaction.

Three experiments were carried out.

Experiment	Temperature/ °C	Size	
1	25	lump	
2	40	lump	
3	25	powder	

i. Compare **Experiment 1** and **Experiment 2**.

In your answer, you should:

- identify the factor being changed, and the effect this will have on the rate of reaction
- explain the effect on the rate of reaction by referring to the collision of particles and activation energy, where appropriate.

-	 	

Skill level 3								
3								
2								
1								
0								
NR								

Compare Experiment 1 and Experimen	ent 3	•
--	-------	---

In your answer, you should:

- identify the factor being changed, and the effect this will have on the rate of reaction
- explain the effect on the rate of reaction by referring to the collision of particles and activation energy, where appropriate.

Skill level 3							
3							
2							
1							
0							
NR							

THIS PAGE HAS BEEN DELIBERATELY LEFT BLANK

	* * Ac	*Lan		723	1 87	132.91	Cs	caesium 55	85.468	R _b	rubidium 37	39.098	ス	19	22.990	Na	11	6.941	Γ.	3	1.0079	I	hydrogen 1
	* * Actinide series	*Lanthanide series	8	ス 226 20	8	137.33	Ba	56	87.62	Sr	strontium 38	40.078	Ca			M g			Be	beryllium 4	, Sc		
	eries	series		*			*														1		
[227]	Ac s	Lanthanum 57		[262]	=	174.97	L	lutetium 71	25		yttrium 39	44.956	Sc	21									9
232.04	5 ®	in. George		Z61	104	178.49	Ť	hafinium 72	91.224	Zr	zirconium 40	47.867	=!	22									
231.04	Pa s	praseodymium 59 Pr 140.91	8	Z62	_		Ta	tantalum 73	92.906	8			<	23									
238.03		neodymium 60 NG		0 0 0	106	183.84	≶	tungsten 74	95.94		molybdenum 42	51.996	င္ပ		-								73
[237]	N s	Pm [145]		Z 4	197			rhenium 75	[98]	T	technetium 43	54.938	<u> </u>	25									
[244]	و ح			ス で の	108	190.23	08	osmium 76	101.07		ruthenium 44		Fe	26	i								W)
[243]	A M	europium 63 151.96		Z68I	1179	_	₹	iridium 77	102.91	공 S	rhodium 45	58.933	င္ပ	27									
[247]	က က	gadolinium 64 Gd 157.25		DUN	110		Pt		106.42	Pd	palladium 46	58.693	Z	28									3
[247]	B %	158.93	8	DUU	111	196.97	Au	gold 79	107.87	Ag	silver 47	63.546	Cu Cu	29									
[251]	ပ္ ။	dysprosium 66 Dy 162.50		dub	112	200.59	Hg	mercury 80	112.41	Cd	cadmium 48	65.39	Zn	30							7		i
[252]	S s	Ho 164.93	10			4		thallium 81				-			-		_	-			8		
		erbium 68		U I I I I I I I I I I I I I I I I I I I	114	207.2	Pb	82	118.71	Sn	5 0 ∰	72.61	Ge	32	28.086	S	14	12.011	റ	carbon 6			d
[258]		Tm 168.93				208.98	<u>ω</u>	83	121.76	Sb	antimony 51	74.922	As	33	30.974	ס	phosphorus 15	14.007	Z	nitrogen 7			3
[259]	102	ytterbium 70 Yb 173.04				[209]	Po	polonium 84	127.60	Te	tellurium 52	78.96	Se	34	32.065	ഗ	16	15.999	0	oxygen 8			3
						[210]	At	astatine 85	126.90	_	53	79.904	땅	35	35.453	<u>ဂ</u>	17	18.998	П	tuorine 9			
						222	R	radon 86	131.29	×e	xenon 54	83.80	즛	36	39.948	A	argon 18	20.180	Ze	10 neon	4.0026	H	helium 2