

| MARKER CODE |  |  |  |
|-------------|--|--|--|
|             |  |  |  |
|             |  |  |  |

| Stude | nt Persor | nal Ident | ification | Number | (SPIN) |
|-------|-----------|-----------|-----------|--------|--------|
|       |           |           |           |        |        |

TONGA GOVERNMENT

#### MINISTRY OF EDUCATION AND TRAINING

# TONGA FORM SIX CERTIFICATE 2015

## **CHEMISTRY**

## **QUESTION AND ANSWER BOOKLET**

Time allowed: 3 Hours

#### **INSTRUCTIONS**

Booklet.

- 1. Write your **Student Personal Identification Number (SPIN)** on the top right hand corner of this page and on the last page of this booklet. Write the Marker Code in the box at the top left hand corner of this page.
- 2. This Examination Paper consists of **TWO** sections. Answer ALL QUESTIONS.

SECTION A: **MULTIPLE CHOICE SECTION B: SHORT ANSWERS** 

**160 MARKS** 

**40 MARKS** 

- TOTAL **200 MARKS** 3. Write the answer to the Multiple Choice Questions in the answer sheet at the back of this
- 4. In **SECTION B**, write the answers to the questions in the spaces provided.
- 5. Check that this booklet contains pages 2-31 in the correct order and that none of these pages are blank.

A group of the Periodic Table of the Elements is provided. The table gives the Symbol, Atomic Number and the Relative Atomic Mass of the elements. The Groups (Columns) are numbered I, II, III, IV etc.

**NOTE**: The symbol M is used for molar mass.

M (Na) = 23 g mol<sup>-1</sup> and M (CO<sub>2</sub>) = 44 g mol<sup>-1</sup>

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR BEFORE YOU LEAVE THE EXAMINATION ROOM.

TOTAL MARKS

200

#### **SECTION A:**

#### **MULTIPLE CHOICE**

(40 MARKS)

Answer all the questions in this section. Write the LETTERS of the best answers in the boxes on the fold-out flap provided on the back flap of this booklet. Question 1-27, 29 are worth 1 mark each. Questions 28, 30-34 are worth 2 marks each.

#### QUESTION 1.

The electron configuration (arrangement) of the phosphide ion, P-3, is:

- A. 3
- B. 2, 8
- C. 2, 8, 5
- D. 2, 8, 8
- E. 2, 8, 8, 3

#### **QUESTION 2.**

Which solid dissolves best in tetra-chloromethane (carbon tetrachloride)?

- A. Iodine
- B. Graphite
- C. Diamond
- D. Sodium chloride
- E. Silicon dioxide

#### **QUESTION 3.**

Which of the following elements has the highest first ionization energy?

- A. Li
- B. Be
- C. N
- D. K
- E. Ca

#### **QUESTION 4.**

In order to measure out 21.4 mL of liquid a student should use a:

- A. beaker.
- B. pipette.
- C. burette.
- D. test tube.
- E. measuring cylinder.

#### QUESTION 5.

In a homologous series of hydrocarbons, all the members have the same:

- A. general formula.
- B. physical formula.
- C. molecular formula.
- D. relative molecular masses.
- E. number of carbon atoms.

#### QUESTION 6.

The molecules  $CH_3 \, CH_2 \, CH_2 \, CH_3$  and

are related in that they:

- A. are isomers.
- B. are isotopes.
- C. both white solids at 20° C.
- D. have the same systematic name.
- E. have the same physical properties.

#### QUESTION 7.

When the colorless gas of ethene,  $C_2 H_4$  is bubbled through bromine water, the solution is seen to turn:

- A. blue.
- B. clear.
- C. green.
- D. purple.
- E. dark brown.

#### **QUESTION 8.**

The reaction of bromine with acetylene (ethyne) is an example of what type of reaction?

- A. Addition.
- B. Substitution.
- C. Precipitation.
- D. Esterification.
- E. Neutralization.

#### **QUESTION 9.**

What would be observed when a mixture of ethanol and acidified potassium dichromate is warmed in a test tube?

- A. A brown gas is evolved.
- B. The mixture turns green.
- C. The mixture turns colourless.
- D. The mixture separates into two layers.
- E. A pleasant fruity smelling vapour is detected.

#### **QUESTION 10.**

When a mixture of ethanol, ethanoic acid and sulfuric acid is warmed in a test tube:

- A. a dense purple vapour is seen.
- B. an orange-brown vapour is seen.
- C. a pleasant, sweet vapour is smelt.
- D. the mixture separates into two layers.
- E. a white solid collects around the neck of the test tube.

#### **QUESTION 11.**

Which of the following classes of organic compounds does soap belong to?

- A. Esters.
- B. Alkanes.
- C. Alcohols.
- D. Carboxylic acids.
- E. Salts of Carboxylic acids.

#### **QUESTION 12.**

An organic compound has the constitutional (structural) formula

$$\begin{array}{c} \operatorname{Cl} \\ | \\ \operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{CH}_{2} - \operatorname{C} - \operatorname{CH}_{2}\operatorname{CH} = \operatorname{CH}_{2} \\ | \\ \operatorname{CH}_{3} \end{array}$$

The IUPAC name for this compound is:

- A. 4-chlro-4-propyl-1-penetene.
- B. 4-chloro-4-methyl-1-heptene.
- C. 4-chloro-4-methyl-6-heptene.
- D. 4-chloro-4-methyl-2-heptene.
- E. 2-chloro-2-(2-propenyl)-pentene.

### **QUESTION 13.**

Which of the following molecules would most likely undergo a polymerization reaction?

- A.  $F_2C = FC_2$
- B. H—CO—O—CH<sub>3</sub>
- C.  $Br-CH_2-CH_2-Br$
- D.  $CH_3$ — $CH_2$ —CO—OH
- E.  $CH_3$ — $CH_2$ — $CH_2$ —OH

#### **QUESTION 14.**

A clear blue solution gave a royal blue solution when excess ammonia was added to it.

The original solution gave no precipitate with either silver nitrate solution or barium chloride solution. The clear blue solution probably contained:

- A. Zinc nitrate.
- B. Zinc chloride.
- B. Copper II sulfate.
- C. Copper II nitrate.
- D. Copper II chloride.

#### **QUESTION 15.**

When dilute nitric acid is added to a white solid it fizzes, it is likely that the solid is a compound of:

- A. Sulfate.
- B. Sodium.
- C. Calcium.
- D. Carbonate.
- E. Magnesium.

#### **QUESTION 16.**

What colour is the complex ion  $Fe(NCS)^{2+}$ ?

- A. Blood-red
- B. Blue-green
- C. Royal blue
- D. Blue-black
- E. Fluorescent yellow

#### **QUESTION 17.**

Which one of the following reagents would be most useful to distinguish between solutions of sodium nitrate and sodium sulfate?

- A. Aqueous ammonia.
- B. Aqueous silver nitrate.
- C. Dilute hydrochloric acid.
- D. Aqueous barium chloride.
- E. Aqueous sodium hydroxide.

#### **QUESTION 18.**

The fastest reaction between marble,  $CaCO_3(s)$  and hydrochloric acid, HCl (aq) would take place between:

- A. powdered marble and 0.2 molL<sup>-1</sup> HCl (aq).
- B. powdered marble and 0.1 molL<sup>-1</sup> HCl (aq).
- C. large lumps of marble and 0.1 molL<sup>-1</sup> HCl (aq).
- D. large lumps of marble and 0.2 molL<sup>-1</sup> HCl (aq).
- E. small lumps of marble and 0.2 molL<sup>-1</sup> HCl (aq).

#### **QUESTION 19.**

A reaction will take place if the required activation energy for effective collisions is present.

Activation energy is the:

- A. energy released midway through a reaction.
- B. energy released as reactant particles collide.
- C. maximum energy required to speed up the particles.
- D. energy released from a reaction as the products form.
- E. minimum energy added to the reactants to produce an effective collision.

### QUESTION 20.

Which one of the following statements is correct when applied to the equation below?

$$C(s) + O_2(g) \longrightarrow CO_2(g), \Delta H = -394 \text{ KJ}$$

The:

- A. reaction observed above is exothermic.
- B. reaction only occurs if pure oxygen is used.
- C. mass of product is less than the total mass fraction.
- D. reaction will speed up if the temperature is decreased.
- E. total number of moles of reactant and product are the same.

#### **QUESTION 21.**

In a system at equilibrium, which statement is **not** true?

- There are both reactants and products present. A.
- В. The concentrations of reactants and products are equal.
- C. The forward and reverse reactions occur at the same rate.
- The concentrations of reactants and products remain constant. D.
- The forward and reverse reactions have different activation energies. E.

#### **QUESTION 22.**

Hydrochloric acid is a strong acid. Given HCl of 0.01molL<sup>-1</sup> solution, the pH is:

- A. 0.01
- 12 В.
- C. 2
- -2 D.
- $10^{-12}$ E.

#### **QUESTION 23.**

Which one of the following species in **bold** behaves as a base?

- 2**NO** A. + O<sub>2</sub>  $2NO_2$ В.
- $NH_3 + H_3 0^+$ C.
- D.
- E.

## **QUESTION 24.**

In the reaction below:

$$H^{+}$$
 (aq)  $+$   $OH^{-}$  (aq)  $\longrightarrow$   $H_{2}O$ 

- The oxygen is reduced. A.
- The oxygen is oxidized. В.
- The hydrogen ion is oxidized. C.
- The hydrogen ion is reduced. D.
- Neither oxidation nor reduction is occurring. E.

#### **QUESTION 25.**

Which one of the following metals is the most powerful reductant?

- A. Iron.
- B. Zinc.
- C. Lead.
- D. Copper.
- E. Magnesium.

#### **QUESTION 26.**

The factors that affect the rate of a reaction are:

- A. concentration, temperature, volume and catalyst.
- B. types of particles, concentration, volume and catalyst.
- C. catalyst, temperature, types of particles and concentration.
- D. temperature, concentration, size of particles and catalyst.
- E. types of particles, concentration, temperature, volume.

#### **QUESTION 27.**

Which one of the following ions or molecules **does not** normally behave as an oxidant?

- A. Fe<sup>3+</sup>
- B.  $Cl_2$
- $C. SO_2$
- D.  $H_2O_2$
- E. MnO<sup>4-</sup>

#### **QUESTION 28.**

A compound has the empirical formula  $C_6H_{12}O$  and a molar mass of 200 gmol<sup>-1</sup>. M(H) = 1, M(C) = 12, M(O) = 16

Which of the following is its molecular formula?

- A.  $C_6H_{12}O$
- B.  $C_{12}H_{24}O_2$
- C.  $C_{18}H_{36}O_3$
- D.  $C_{24}H_{48}O_4$
- E.  $C_{30}H_{60}O_5$

### **QUESTION 29.**

The compound in **QUESTION 28** on page 8 could be a/an:

- A. acid
- B. soap
- C. ester
- D. alcohol
- E. triglyceride

#### QUESTION 30.

The empirical formula of a substance is HO. Its molar mass is 34g. The molecular formula of the substance is:

- A. OH
- B.  $H_2O$
- C.  $H0_2$
- D.  $H_2O_2$
- E.  $H_3O_4$

Ar values: (H) = 1; (O) = 16

### **QUESTION 31.**

One mole of nitrogen gas has the same number of atoms as:

- A. one mole of neon.
- B. one mole of chlorine.
- C. half a mole of oxygen.
- D. four moles of sulfur dioxide.
- E. one third mole of a mole of carbon dioxide.

#### **QUESTION 32.**

A student heats a crystalline solid to remove the water of crystallization. In the results the following was noted:

```
Weight of crucible = 18.611 g

Weight of crucible + solid = 20.453 g

Weight of crucible + solid after 10 min heating = 19.678 g

Weight of crucible + solid after 15 min heating = 19.654 g

Weight of crucible + solid after 25 min heating = 19.654 g
```

The amount of water (in mol) in the crystals was:

- A. 0.102
- B. 0.044
- C. 0.058
- D. 0.0044
- E. 1,043

#### QUESTION 33.

The oxidation state (oxidation number) of chlorine in HClO<sub>4</sub> is:

- A. -1
- B. -5
- C. -7
- D. +7
- E. +5

#### **QUESTION 34.**

The element Q has an electron configuration 2, 4 The type of bonding most likely to occur in the compound of Q with Chlorine would be:

- A. covalent by sharing six electrons.
- B. covalent by sharing two electrons.
- C. covalent by sharing four electrons.
- D. ionic by transferring two electrons to form  $Q^{2+}$ .
- E. ionic by transferring four electrons to form  $Q^{4+}$ .

#### **SECTION B: SHORT ANSWERS**

(160 Marks)

Answer ALL the questions in this section in the spaces provided.

| 1  | What is meant by the <b>electronegativity</b> of an atom? | 1 Ma | ırk |
|----|-----------------------------------------------------------|------|-----|
| 1. | What is meant by the discitoring activity of all atom.    | 1    |     |
|    |                                                           | 0    |     |
|    |                                                           | NR   |     |

2. The relative atomic radii of the period 2 elements are **shown in Table 1**:

Table 1: Relative atomic radii of period 2 elements.

| Ī | Li   | Be   | В    | С    | N    | О    | F    |
|---|------|------|------|------|------|------|------|
|   | 1.23 | 0.89 | 0.80 | 0.77 | 0.74 | 0.74 | 0.72 |

| Use | Table 1 to:                                            | 1 M  | ark |
|-----|--------------------------------------------------------|------|-----|
| i)  | State the element with the most non-metallic property. | 1    |     |
| -)  | state the element with the most non metame property.   | 0    |     |
|     |                                                        | NR   |     |
| ii) | Explain the observed trends in these atomic radii.     | 2 Ma | rks |
| ,   |                                                        | 2    |     |
|     |                                                        | _ 1  |     |
|     |                                                        | 0    |     |

3. a) A sample of sulfuric acid contains  $3 \times 10^{23}$  molecules.

i)

| a sample of summit acid contains 5 x 10 m molecules. |    |   |  |
|------------------------------------------------------|----|---|--|
|                                                      | 1  |   |  |
| How many moles of sulfuric acid is this?             | 0  |   |  |
|                                                      | NF | R |  |
|                                                      | _  |   |  |

ii) How many atoms of hydrogen will there be?

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

NR

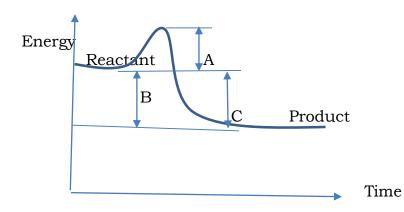
1 Mark

b) How many atoms of sulfur will the sample contain?

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

| c)       | A compound of carbon, hydrogen and oxygen only, with a molar mass of 110 gmol <sup>-1</sup> contains 65.5% carbon and 5.5% hydrogen. What is its molecular formula?                                                                                                                                                                                                              |                                      |      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 4 mar                                | ks   |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 4                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 3                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 2                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 1                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 0                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | NR                                   |      |
| 4. a)    | Distinguish between the meaning of <b>saturated</b> and <b>unsaturated</b> hydrocarbon.                                                                                                                                                                                                                                                                                          | 2 Mar                                | ks   |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 2                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 1                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 0                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | NR                                   |      |
| b)<br>5. | 2-Butene exists in two different forms known as geometric isomers. They are cis-2-butene and trans-2-butene. Distinguish between "cis" and "trans" isomers using 2-Butene.  Table 2 contain the chlorides of the elements in the short period of the periodic table (sodium to chlorine)  Table 2: Some Chlorides  NaCl MgCl <sub>2</sub> I II PCL <sub>3</sub> SCl <sub>2</sub> | 4 mad<br>4<br>3<br>2<br>1<br>0<br>NR |      |
|          | Use <b>Table 2</b> to:                                                                                                                                                                                                                                                                                                                                                           | 2 M                                  | arks |
| a)       | Write the formula for the missing chlorides I and II.                                                                                                                                                                                                                                                                                                                            | 1                                    |      |
|          | I:                                                                                                                                                                                                                                                                                                                                                                               | 0                                    |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | NR                                   |      |
|          | II:                                                                                                                                                                                                                                                                                                                                                                              |                                      |      |
| b)       | Name the type of bonds that exist in compounds across the table from                                                                                                                                                                                                                                                                                                             | 1 M                                  | lark |
| O)       | NaCl to SCl <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                       | 1                                    |      |
|          | <del>4</del>                                                                                                                                                                                                                                                                                                                                                                     |                                      |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                  | 0                                    |      |

NR


#### **QUESTION 2: PHYSICAL CHEMISTRY**

(20 Marks)

1. a) What is activation energy?

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

b) Graph 1: Energy vs Time graph



From **Graph 1**, which letter represents the activation energy?

\_\_\_\_

| 1 Ma | 1 Mark |  |
|------|--------|--|
| 1    |        |  |
| 0    |        |  |
| NR   |        |  |

1 Mark

0 NR

4 marks

c) Explain the effect of catalyst in terms of activation energy.

| Γ |
|---|
|   |
|   |
|   |

2. Write the missing words on the space provided.

Electrochemical cells in the laboratory consist of two half cells with two different electrolytes connected internally by a salt bridge. If these are connected by an external conductor (i) \_\_\_\_\_\_\_ occurs readily at the anode releasing electrons which move through the external conductor to bring about (ii) \_\_\_\_\_\_ at the other electrode called the (iii) \_\_\_\_\_\_\_ carry the current through the solution.

| occurs   |    |  |
|----------|----|--|
| 1        | 2  |  |
| external | 1  |  |
| e other  | 0  |  |
|          | NR |  |

The overall cell equation is the overall summation of the two half cells.

3. **Table 3** gives the electronic structure of two elements A and B.

On the basis of these electronic structures, predict the formula of the compound that these elements would form and the type of bonding that would occur between the atoms.

Table 3: Element A and B electronic structures.

| Element A | Element B | Formula | Bond Type |
|-----------|-----------|---------|-----------|
| 2,4       | 1         |         |           |
| 2,8,5     | 2,8,7     |         |           |
| 2,1       | 2,8,6     |         |           |
| 2,8,3     | 2,6       |         |           |

| 4 marks |  |
|---------|--|
| 4       |  |
| 3       |  |
| 2       |  |
| 1       |  |
| 0       |  |
| NR      |  |

| 4. | Draw | Lewis | diagram | of HCN | molecule: |
|----|------|-------|---------|--------|-----------|
|    |      |       |         |        |           |

| 3 marks |  |
|---------|--|
| 3       |  |
| 2       |  |
| 1       |  |
| 0       |  |
| NR      |  |

5. When potassium chlorate is heated, it decomposes to potassium chloride and oxygen according to the equation

$$2KClO_3 \longrightarrow 2KCl + 3O_2$$

a) How many moles of oxygen are produced by heating 8 moles of potassium chlorate?

| 2 Ma | 2 Marks |  |  |
|------|---------|--|--|
| 2    |         |  |  |
| 1    |         |  |  |
| 0    |         |  |  |
| NR   |         |  |  |

b) What mass of potassium chlorate does this correspond to?

| 2 Ma | 2 Marks |  |  |
|------|---------|--|--|
| 2    |         |  |  |
| 1    |         |  |  |
| 0    |         |  |  |
| NR   |         |  |  |

c) What mass of oxygen is produced?

| 2 Marks |  |  |
|---------|--|--|
| 2       |  |  |
| 1       |  |  |
| 0       |  |  |
| NR      |  |  |

# QUESTION 3: BONDING, PHYSICAL CHEMISTRY and OXIDATION & REDUCTION (20 Marks)

1. **Table 4** has eight pieces of information missing from it. Write the missing information in the spaces provided in **Table 4**.

Table 4:

| OXIDE                          | STATE AT<br>20° C | BONDING                                     | STRUCTURE                                         |
|--------------------------------|-------------------|---------------------------------------------|---------------------------------------------------|
| Na <sub>2</sub> O              | (i)               | (ii)<br>——————————————————————————————————— | (iii)                                             |
| SiO <sub>2</sub>               | solid             | (iv)                                        | (v)                                               |
| P <sub>4</sub> O <sub>10</sub> | solid             | covalent                                    | Molecules held together<br>by Van der Waals force |
| SO <sub>3</sub>                | (vi)              | (vii)                                       | (viii)                                            |

| 4 ma | 4 marks |  |
|------|---------|--|
| 4    |         |  |
| 3    |         |  |
| 2    |         |  |
| 1    |         |  |
| 0    |         |  |
| NR   |         |  |

2. State the effect of the particle size on the rate of reaction in terms of Collision Theory.

| 3 marks |  |  |  |  |
|---------|--|--|--|--|
| 3       |  |  |  |  |
| 2       |  |  |  |  |
| 1       |  |  |  |  |
| 0       |  |  |  |  |
| NR      |  |  |  |  |

- 3. **Balance** and **complete** the following equations.
  - a)  $Al(OH)_3(s) + HCl(aq) \rightarrow$

| b) | $Al(OH)_3(s) + NaOH(aq)$ | $\rightarrow$ |
|----|--------------------------|---------------|
| D) | m(011)3(3) · ma011(aq)   |               |

| c) | Equations in (a) and (b) show aluminium hydroxide acting as a    |
|----|------------------------------------------------------------------|
|    | base and as an acid. The term used to describe this property is: |

| 4 marks |  |  |  |  |
|---------|--|--|--|--|
| 4       |  |  |  |  |
| 3       |  |  |  |  |
| 2       |  |  |  |  |
| 1       |  |  |  |  |
| 0       |  |  |  |  |
| NR      |  |  |  |  |

| 1 Mark |  |  |
|--------|--|--|
| 1      |  |  |
| 0      |  |  |
| NR     |  |  |

| 4 a)  | Write | halanced  | ion-electron | equations | for each  | equation | helow  |
|-------|-------|-----------|--------------|-----------|-----------|----------|--------|
| т. аі | WILL  | Daianiccu | 1011-0100011 | Cuuauons  | ioi cacii | Cuuauun  | DCIOW. |

Balance the atoms and the charges.

| i) | $SO_2 \longrightarrow$ | SO <sub>4</sub> <sup>2-</sup> |
|----|------------------------|-------------------------------|
|    |                        |                               |
|    |                        |                               |

| ii) | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | $\longrightarrow$ | Cr <sup>3+</sup> | 3 marks |  |
|-----|----------------------------------------------|-------------------|------------------|---------|--|
|     |                                              |                   |                  | 3       |  |
|     |                                              |                   |                  | <br>2   |  |
|     |                                              |                   |                  | 1       |  |
|     |                                              |                   |                  | <br>0   |  |
|     |                                              |                   |                  | NR      |  |

iii) Indicate which of the ion-electron equations above shows reduction.

| 1 Mark |  |  |  |  |
|--------|--|--|--|--|
| 1      |  |  |  |  |
| 0      |  |  |  |  |
| NR     |  |  |  |  |

0 NR

b)  $Fe^{3+}$  (aq) +  $e^{-}$   $\longrightarrow$   $Fe^{2+}$  (aq)

State the colours of the ions in this ion-electron equation.

| 1 Mark |  |  |  |  |
|--------|--|--|--|--|
| 1      |  |  |  |  |
| 0      |  |  |  |  |
| NR     |  |  |  |  |

## QUESTION 4: BONDING, QUANTITATIVE, INORGANIC and PHYSICAL

(20 Marks)

| 1. |    | Strontium chloride is an ionic compound, naphthalene is a covalent solid, scandium is a metal and silicon carbide has a giant covalent structure.                                                            |      |     |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
|    |    | 5001242411 15 4 1110141 4124 51110011 641 5140 1140 4 Grant 65 441011 65 46041 6                                                                                                                             | 1 Ma | ırk |
|    |    |                                                                                                                                                                                                              | 1    |     |
|    | a) | Name the substance expected to have the highest melting point.                                                                                                                                               | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |
|    |    |                                                                                                                                                                                                              |      |     |
|    |    |                                                                                                                                                                                                              | 1 Ma | ark |
|    | b) | Name the substance expected to be soluble in water.                                                                                                                                                          | 1    |     |
|    |    |                                                                                                                                                                                                              | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |
|    | o) | Name the substance expected to conduct electricity only when molten,                                                                                                                                         | 1 Ma | ark |
|    | C) | or in solution.                                                                                                                                                                                              | 1    |     |
|    |    |                                                                                                                                                                                                              | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |
|    |    |                                                                                                                                                                                                              | 1 Ma | ark |
|    | d) | Write the substance expected to be malleable.                                                                                                                                                                | 1    |     |
|    |    |                                                                                                                                                                                                              | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |
|    |    |                                                                                                                                                                                                              |      |     |
|    | e) | Identify the element having the following electron configuration:                                                                                                                                            | 1 Ma | ark |
|    |    | $1s^2 2s^2 2p^6 3s^2 3p^3$                                                                                                                                                                                   | 1    |     |
|    |    | 20 2p 00 0p                                                                                                                                                                                                  | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |
| 2. |    | Suppose 6.25g of blue hydrated copper(II) sulfate, <b>CuSO<sub>4</sub>.xH<sub>2</sub>O</b> , (x unknown) was gently heated in a crucible until the mass remaining was a constant 4.00g. Calculate <b>x</b> . |      |     |
|    |    |                                                                                                                                                                                                              | 4 ma | rks |
|    |    |                                                                                                                                                                                                              | 4    |     |
|    |    |                                                                                                                                                                                                              | 3    |     |
|    |    |                                                                                                                                                                                                              | 2    |     |
|    |    |                                                                                                                                                                                                              | 0    |     |
|    |    |                                                                                                                                                                                                              | NR   |     |

### 3. Table 5: Summary of reactions of some pairs of solutions.

| Reacting solutions | Sodium chloride | Sodium sulfate                              | Sodium carbonate                        |             |     |
|--------------------|-----------------|---------------------------------------------|-----------------------------------------|-------------|-----|
| Silver<br>nitrate  | I:<br>          | A white<br>precipitate of<br>silver sulfate | A white precipitate of silver carbonate |             |     |
| Barium<br>chloride | No reaction     | II:                                         | A white precipitate of barium carbonate |             |     |
|                    |                 |                                             |                                         | <b>4</b> ma | rks |
| Copper<br>chloride | III:            | No reaction                                 | IV:                                     | 3           |     |
| cnioride           |                 |                                             |                                         | 2           |     |
|                    |                 |                                             |                                         | 0           |     |
|                    |                 |                                             |                                         | NR          |     |

Several of the spaces have been filled with descriptions of what happens when the solutions are mixed. e.g. When silver nitrate is added to sodium sulfate, a white precipitate of silver sulfate forms.

- a) Write similar statements on the spaces I to IV on Table 5.
- b) Describe what happens when dilute hydrochloric acid is added to the product in **IV** above.

| 1 Ma | ark |
|------|-----|
| 1    |     |
| 0    |     |
| NR   |     |

4. Calcium oxide reacts with water as follows:

$$CaO(s) + H2O(l) \longrightarrow Ca(OH)2(s)$$

Calculate the enthalpy change for the reaction above using the a) following data:

(i) 
$$Ca(s) + \frac{1}{2} O_2 \longrightarrow CaO(s) \Delta H^0 = -636 \text{ kJ}$$

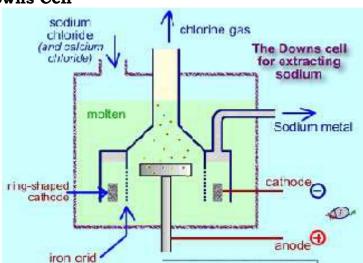
(ii) 
$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(1) \Delta H^0 = -572 \text{ kJ}$$

(iii) Ca(s) + 
$$O_2(g)$$
 +  $H_2(g)$  - Ca(OH)<sub>2</sub>(s)  $\Delta H^0 = -987 \text{ kJ}$ 

|  | 4 ma |
|--|------|
|  |      |
|  | 4    |
|  | 3    |
|  | 1    |
|  | 0    |
|  | NR   |
|  | INIX |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |
|  |      |

b) Is the hydration of quicklime exothermic or endothermic? State a

| reason for your answer. |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |
|                         |  |  |


| 2 Marks |  |  |
|---------|--|--|
| 2       |  |  |
| 1       |  |  |
| 0       |  |  |
| NR      |  |  |

marks

# QUESTION 5: OXIDATION & REDUCTION and QUANTITATIVE CHEMISTRY (20 Marks)

1. Sodium metal is produced by electrolysis in the Downs Cell. **Figure 1** is a simplified diagram of a Downs Cell.

Figure 1: Downs Cell



| a) Name | e the raw | material | used as | the | reactant in | this | process. |
|---------|-----------|----------|---------|-----|-------------|------|----------|
|---------|-----------|----------|---------|-----|-------------|------|----------|

| 1 Ma | ırk |
|------|-----|
| 1    |     |
| 0    |     |
| NR   |     |

b) The raw material is usually mixed with calcium chloride and then melted. State a reason for adding calcium chloride.

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

c) State **TWO** important properties of graphite which allow it to be used as the anode.

| 2 Marks |  |  |
|---------|--|--|
| 2       |  |  |
| 1       |  |  |
| 0       |  |  |
| NR      |  |  |

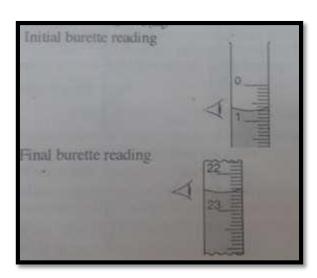
ii)

i)

| d) | i) | Write an ion-electron equation for the reaction that occurs at the |
|----|----|--------------------------------------------------------------------|
|    |    | cathode.                                                           |

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

ii) State clearly whether this is oxidation or reduction.


| 1 Mark |  |  |  |
|--------|--|--|--|
| 1      |  |  |  |
| 0      |  |  |  |
| NR     |  |  |  |

2. The following question refers to a titration with HCl(aq) in a burette against  $Na_2CO_3$  (aq) in a conical flask. The  $Na_2CO_3$  (aq) is prepared by dissolving 1.375g of pure anhydrous  $Na_2CO_3$  (s) in distilled water to make 250 mL of solution.

The results are as follows:

Volume of  $Na_2CO_3$  (aq) used = 25.0 mL

Figure 2



b) Calculate the **concentration** of the  $Na_2CO_3$  (aq) in (mol L<sup>-1</sup>).

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |

- c) Name the glassware which is used:
  - i) to prepare the 250 mL of  $Na_2CO_3$  (aq).
  - ii) to measure and transfer 25.0 mL  $Na_2CO_3$  (aq) to the conical flask.

| 1 Mark |  |  |  |
|--------|--|--|--|
| 1      |  |  |  |
| 0      |  |  |  |
| NR     |  |  |  |

1 Mark

0 NR

| Write the balanced equation for the reaction of HCl $_{(aq)}$ and $Na_2CO_3$ (ac                                                                                      | q). <b>2 Ma</b> i           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                                                                                       | 2                           |
|                                                                                                                                                                       | 1                           |
|                                                                                                                                                                       | 0                           |
|                                                                                                                                                                       | NR                          |
| Use <b>Figure 2</b> to determine the titre value.                                                                                                                     | 2 Mai                       |
|                                                                                                                                                                       | 2                           |
|                                                                                                                                                                       | 1                           |
|                                                                                                                                                                       | 0                           |
|                                                                                                                                                                       | NR                          |
|                                                                                                                                                                       | 4 ma                        |
|                                                                                                                                                                       | 4                           |
|                                                                                                                                                                       | 4 3                         |
|                                                                                                                                                                       | 4<br>3<br>2                 |
|                                                                                                                                                                       | 4 3                         |
|                                                                                                                                                                       | 3<br>2<br>1<br>0            |
| Refere the burette is filled with gold it is noticed that there is liquid                                                                                             | 4<br>3<br>2<br>1            |
| Before the burette is filled with acid it is noticed that there is liquid from a previous experiment still in the burette. Explain how should the parents he classed? | 4<br>3<br>2<br>1<br>0<br>NR |
| •                                                                                                                                                                     | 4<br>3<br>2<br>1<br>0<br>NR |
| from a previous experiment still in the burette. Explain how should t                                                                                                 | 4 3 2 1 0 NR                |
| from a previous experiment still in the burette. Explain how should t                                                                                                 | 1 0 NR 1 M                  |

# QUESTION 6: ORGANIC CHEMISTRY, PHYSICAL CHEMISTRY and REDOX (20 Marks)

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Mai     | rks  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |      |
| Writ                     | e an equation showing how to convert ethyl bromide to ethyl alcohol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |      |
|                          | o on one of the contract of th | 0         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR        |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |
| Stat                     | e the important observations that is expected to be made in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Ma      | rk   |
| follo                    | wing test tube reaction: Propanol is warmed with dilute acidified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |      |
| pota                     | assium dichromate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR        |      |
|                          | rder to differentiate the following alcohols write next to each compounder primary, secondary or tertiary alcohol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l<br>3 ma | nrks |
| a)                       | CH <sub>3</sub> CH(OH) CH <sub>3</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3         |      |
| •                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |      |
| b)                       | CH <sub>3</sub> CH <sub>2</sub> OH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0         |      |
| c)                       | (CH <sub>3</sub> ) <sub>3</sub> OH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NR        |      |
| equa<br>2S0 <sub>2</sub> | mportant reaction in the production of sulfuric acid is represented by tation: $\frac{1}{2}(g) + 0_2(g) \Rightarrow 2SO_3(g) + heat$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ihe       |      |
|                          | at changes would occur in the yield of sulfur trioxide at equilibrium in of the following cases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Ma      | rks  |
| (a)                      | the mixture is heated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0       |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR        |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |
| (b)                      | oxygen is added?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Ma      | rks  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0       |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR        |      |

|            | (c)                                                                                                                                                     | the total pressure of the system is reduced by increasing the volume                                                         | 2 Ma    | rks  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|------|
|            |                                                                                                                                                         | of the container?                                                                                                            | 2       |      |
|            |                                                                                                                                                         |                                                                                                                              | 1       |      |
|            |                                                                                                                                                         |                                                                                                                              | 0       |      |
|            |                                                                                                                                                         |                                                                                                                              | NR      |      |
|            |                                                                                                                                                         |                                                                                                                              | 1 Ma    | rk   |
| 5.         |                                                                                                                                                         | mesium metal can be attached to the steel pipeline to prevent rusting.                                                       | 1       |      |
|            | wna                                                                                                                                                     | at name is given to this type of protection provided by magnesium?                                                           | 0       |      |
|            |                                                                                                                                                         |                                                                                                                              | NR      |      |
|            |                                                                                                                                                         |                                                                                                                              |         |      |
| 6.         |                                                                                                                                                         | el cars can be protected from rusting in a number of ways. Dipping                                                           | 1 Ma    | rk   |
|            |                                                                                                                                                         | l in molten zinc can also physically protect steel from rust. Explain the steel will not rust even if the zinc is scratched? | 1       |      |
|            | 3                                                                                                                                                       |                                                                                                                              | 0<br>NR |      |
|            |                                                                                                                                                         |                                                                                                                              | INIX    |      |
| <b>-</b>   |                                                                                                                                                         |                                                                                                                              | 2 Mai   | rks  |
| 7. a)      |                                                                                                                                                         | t is meant by the term <b>"strong acid</b> "? Write an equation as an nple.                                                  | 2       |      |
|            | 011001                                                                                                                                                  | p                                                                                                                            | 1       |      |
|            |                                                                                                                                                         |                                                                                                                              | 0       |      |
|            |                                                                                                                                                         |                                                                                                                              | NR      |      |
| <b>5</b> ) | The                                                                                                                                                     | ammonium ion is a weak said. Chave what this manns has writing the                                                           | 2 Ma    | rks  |
| Dj         | The ammonium ion is a <b>weak acid</b> . Show what this means by writing the <b>balanced equation</b> for the reaction between ammonium ions and water. |                                                                                                                              | 2       |      |
|            |                                                                                                                                                         | <del>-</del>                                                                                                                 | 1       |      |
|            |                                                                                                                                                         |                                                                                                                              | 0       |      |
| 0          | 0                                                                                                                                                       |                                                                                                                              | NR      |      |
| 8.         |                                                                                                                                                         | sider the neutralization reaction between hydrochloric acid and um hydroxide:                                                |         |      |
|            |                                                                                                                                                         | $HC1 + NaOH \longrightarrow NaC1 + H_2O$                                                                                     |         |      |
|            |                                                                                                                                                         | concentration of the hydrochloric acid is 10 <sup>-1</sup> mol L <sup>-1</sup> .                                             |         |      |
|            |                                                                                                                                                         | <ul><li>What is its pH?</li><li>What is the pH of the solution when neutralization is complete?</li></ul>                    | 2 Ma    | irks |
|            |                                                                                                                                                         | ,                                                                                                                            | 2       |      |
|            |                                                                                                                                                         |                                                                                                                              | 1       |      |
|            |                                                                                                                                                         |                                                                                                                              | 0       |      |

NR

## **QUESTION 7: ORGANIC CHEMISTRY**

(20 Marks)

| •  |      | •                                                                         | •          |
|----|------|---------------------------------------------------------------------------|------------|
| 1. | Con  | sider the compounds C, D, and E.                                          |            |
| a) | Con  | npound C, C3H8O, is oxidized to acetone.                                  | 2 N        |
|    | Writ | te the: i) structure and ii) name of C.                                   | 2          |
|    | i)   | Structure :                                                               | 0          |
|    | ii)  | Name :                                                                    | N          |
| b) | Con  | apound D, $C_4H_{10}$ , is oxidized in two steps to 2-methylpopanoic acid |            |
|    | ÇHз  |                                                                           |            |
|    |      | CHCOOH 2-methylpropanoic acid                                             |            |
|    | СНз  |                                                                           | 2.5        |
|    |      | te the i) structure and ii) name of D                                     | <b>2 N</b> |
|    |      | ,                                                                         | 1          |
|    | i)   | structure:                                                                | O<br>NI    |
|    | ii)  | name:                                                                     | IVI        |
| c) | Alco | shol E is oxidized partially to $CH_2O_2$ .                               | 2 N        |
|    | Writ | te the i) structure and ii) name of E.                                    | 2          |
|    | i)   | Structure:                                                                | 1          |
|    | ·    |                                                                           | 0<br>NI    |
|    | ii)  | Name:                                                                     |            |
|    | iii) | Write the oxidation product of the reaction.                              | 1          |
|    |      |                                                                           | 1          |

| 2. | Compound F (butanal) and compound G (butanone) have the same |
|----|--------------------------------------------------------------|
|    | molecular formula, $C_4H_8O$ .                               |

| a) | What term is used to describe the compounds with the same molecular |
|----|---------------------------------------------------------------------|
|    | formula?                                                            |

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

1 Mark

| Name the functional group common to both F and G.                                                     | 1         |  |
|-------------------------------------------------------------------------------------------------------|-----------|--|
| name the functional group common to both I and G.                                                     | 0         |  |
|                                                                                                       | NR        |  |
|                                                                                                       | 1 Mark    |  |
| Explain why the compounds CH <sub>3</sub> COOH and C <sub>3</sub> H <sub>7</sub> COOH tend to have    | 1         |  |
| similar chemical properties.                                                                          | 0         |  |
|                                                                                                       | NR        |  |
|                                                                                                       | 2.04      |  |
| Write the chemical equations for the reaction of CH <sub>3</sub> COOH with sodium hydroxide solution. | 2 Marks   |  |
| Trydroxide solution.                                                                                  | 1         |  |
|                                                                                                       | 0         |  |
|                                                                                                       | NR        |  |
|                                                                                                       |           |  |
| Ethanol and acetic acid were refluxed with a little concentrated sulfurio                             |           |  |
| acid.                                                                                                 | I WILLIAM |  |
|                                                                                                       | 1         |  |
| Name the organic product expected from the reaction.                                                  | 0         |  |
|                                                                                                       | NR        |  |
| TTT '                                                                                                 | 2 Marks   |  |
| Write the chemical equation for the reaction.                                                         | 2         |  |
|                                                                                                       | _ 1       |  |
|                                                                                                       | 0         |  |
|                                                                                                       | NR        |  |
| State the function of sulfuric acid.                                                                  | 1 Mark    |  |
|                                                                                                       | 1         |  |
|                                                                                                       | 0         |  |
|                                                                                                       | NR        |  |
| Draw the <b>cyclic</b> structure of glucose                                                           |           |  |
|                                                                                                       |           |  |
|                                                                                                       |           |  |
|                                                                                                       |           |  |
|                                                                                                       | 3 marks   |  |
|                                                                                                       | 3         |  |
|                                                                                                       | 2         |  |
|                                                                                                       | 1         |  |
|                                                                                                       |           |  |
|                                                                                                       | 0<br>NR   |  |

7. Both Fehling's and Benedict's reagent contain a blue copper (II) complex compound.

What will be observed if glucose is present when tested with Fehling's or Benedict's reagent?

| 1 Mark |  |
|--------|--|
| 1      |  |
| 0      |  |
| NR     |  |

## QUESTION 8: ATOMIC STRUCTURE and ORGANIC CHEMISTRY (20 Marks)

| 1.a) | What   | shapes would you predict for the following compounds?                     | 1 Ma    | ark     |
|------|--------|---------------------------------------------------------------------------|---------|---------|
|      | i)     | NF <sub>3</sub>                                                           | 1       |         |
|      | •      |                                                                           | 0       |         |
|      |        |                                                                           | NR      |         |
|      | ii)    | CCl <sub>4</sub>                                                          | 1 Ma    | ark     |
|      |        |                                                                           | 1       |         |
|      |        |                                                                           | 0       |         |
|      |        |                                                                           | NR      |         |
| b)   |        | the shapes in <b>a)</b> to predict whether the molecules will be polar or | 1 Ma    | aul.    |
|      | non-j  | polar.                                                                    | 1       | ark<br> |
|      | i)     | NF <sub>3</sub>                                                           | 0       |         |
|      |        |                                                                           | NR      |         |
|      |        |                                                                           | 4.04    |         |
|      |        |                                                                           | 1 Ma    | ark<br> |
|      |        |                                                                           | 0       |         |
|      | ii)    | CCl <sub>4</sub>                                                          | NR      |         |
|      | ,      | * ————————————————————————————————————                                    |         |         |
| 2.   |        | drops are added to a sample of Calcium Carbide (CaC2) in a                |         |         |
|      | test t | cube.                                                                     | 1 Ma    | ark     |
|      | a)     | Name the gaseous product.                                                 | 1       |         |
|      |        |                                                                           | 0<br>NR |         |
|      |        |                                                                           | INIX    |         |
|      |        |                                                                           |         |         |
|      | b)     | Write a balanced equation for the formation of this product.              | 2 Ma    | rks     |
|      |        |                                                                           | 2       |         |
|      |        |                                                                           | 1       |         |
|      |        |                                                                           | 0       |         |
|      |        |                                                                           | NR      | 1       |

| 3.   | The main difference between the three types of alcohols is in their                                          | 1 84- | - ula |
|------|--------------------------------------------------------------------------------------------------------------|-------|-------|
|      | oxidation. Deduce the products formed from oxidation of the three                                            | 1 Ma  | ark   |
|      | types of alcohols.                                                                                           | 1     |       |
|      |                                                                                                              | 0     |       |
|      |                                                                                                              | NR    |       |
| i)   | Primary:                                                                                                     | 1 Ma  | ark   |
|      |                                                                                                              | 1     |       |
|      |                                                                                                              | 0     |       |
|      |                                                                                                              | NR    |       |
| ii)  | Secondary:                                                                                                   |       | I     |
|      |                                                                                                              |       |       |
|      |                                                                                                              | 1 Ma  | ark   |
| :::\ | T                                                                                                            | 1     |       |
| iii) | Tertiary:                                                                                                    | 0     |       |
|      |                                                                                                              | NR    |       |
| 4.   | The term commission is derived from the fact that the all rating                                             |       |       |
| 4.   | The term <b>saponification</b> is derived from the fact that the alkaline hydrolysis of fats produces soaps. | 1 Ma  | ark   |
|      |                                                                                                              | 1     |       |
| a)   | Name the functional group present in all fats.                                                               | 0     |       |
|      |                                                                                                              | NR    |       |
|      |                                                                                                              | 2 Ma  | rke   |
| b)   | State the experimental conditions necessary to obtain a high conversion                                      | 2     | IKS   |
|      | of fat to soap.                                                                                              | 1     |       |
|      |                                                                                                              | 0     |       |
|      |                                                                                                              | NR    |       |
|      |                                                                                                              | INK   |       |
| c)   | Explain how soap remove grease from dirt.                                                                    |       |       |
| ۷,   | Enplant now boap remove groupe from an a                                                                     |       |       |
|      |                                                                                                              |       |       |
|      |                                                                                                              | 4 ma  | arks  |
|      |                                                                                                              | 4     |       |
|      |                                                                                                              | 3     |       |
|      |                                                                                                              | 2     |       |
|      |                                                                                                              | 0     |       |
|      |                                                                                                              | NR    | +     |

|    | 30                                                                           |      |         |  |
|----|------------------------------------------------------------------------------|------|---------|--|
|    | 30                                                                           | 1 Ma | ırk     |  |
| e) | Glycerol is an important by-product in soap making. State its formula.       | 1    |         |  |
|    |                                                                              |      |         |  |
|    |                                                                              |      |         |  |
| 4. | Explain the production of polythene (polyethylene) using structural formula. | 2 Ma | 2 Marks |  |
|    |                                                                              | 2    |         |  |
|    |                                                                              |      |         |  |
|    |                                                                              | 0    |         |  |
|    |                                                                              | NID  |         |  |

| anariosi i se                                              |    |  |  |  |  |  |  |
|------------------------------------------------------------|----|--|--|--|--|--|--|
| SECTION A : MULTIPLE<br>CHOICE                             |    |  |  |  |  |  |  |
| Write the letter of your Best<br>Answer in the boxes below |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
|                                                            |    |  |  |  |  |  |  |
| S.A                                                        |    |  |  |  |  |  |  |
|                                                            | 40 |  |  |  |  |  |  |

| Student Personal Identification Number (SPIN) |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                               |  |  |  |  |  |  |  |  |  |

## TONGA FORM SIX CERTIFICATE CHEMISTRY

## FOR MARKER'S USE ONLY

2015

| Sections   | Marks |  | C/Marks |  |
|------------|-------|--|---------|--|
| Section A  | 40    |  |         |  |
| Section B  | 160   |  |         |  |
| Question 1 | 20    |  |         |  |
| Question 2 | 20    |  |         |  |
| Question 3 | 20    |  |         |  |
| Question 4 | 20    |  |         |  |
| Question 5 | 20    |  |         |  |
| Question 6 | 20    |  |         |  |
| Question 7 | 20    |  |         |  |
| Question 8 | 20    |  |         |  |
| TOTAL      | 200   |  |         |  |
|            |       |  |         |  |